• Title/Summary/Keyword: Energy approach

Search Result 3,363, Processing Time 0.035 seconds

Wind and solar energy: a comparison of costs and environmental impacts

  • Carnevale, Ennio A.;Lombardi, Lidia;Zanchi, Laura
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.121-146
    • /
    • 2016
  • This study is concerned with the analysis of two renewable technologies for electric energy production: wind energy and photovoltaic energy. The two technologies were assessed and compared by economic point of view, by using selected indicators characterized by a clear calculation approach, requirement of information easy to be collected, clear, but even complete, interpretation of results. The used economic indicators are Levelized Cost of Energy, $CO_2$ abatement cost and fossil fuel saving specific cost; these last two specifically aimed at evaluating the different capabilities that renewable technologies have to cut down direct $CO_2$ emissions and to avoid fossil fuel extraction. The two technologies were compared also from the environmental point of view by applying Life Cycle Assessment approach and using the environmental impact categories from the Eco-indicator'95 method. The economic analysis was developed by taking into account different energy system sizes and different geographic areas in order to compare different European conditions (Italy, Germany and Denmark) in term of renewable resource availability and market trend. The environmental analysis was developed comparing two particular types of PV and wind plants, respectively residential and micro-wind turbine, located in Italy. According to the three calculated economic indicators, the wind energy emerged as more favorable than PV energy. From the environmental point of view, both the technologies are able to provide savings for almost all the considered environmental impact categories. The proposed approach, based on the use of economic and environmental indicators may be useful in supporting the policies and the decision making procedures concerned with the promotion and use of renewables, in reference to the specific geographic, economic and temporal conditions.

The Optimal Design and Economic Evaluation of a Stand-Alone RES Energy System for Residential, Agricultural and Commercial Sectors (신재생에너지 기반 독립 에너지공급 시스템 최적 설계 및 에너지수요 부문별 경제성 평가)

  • Kim, Kihyeon;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.470-478
    • /
    • 2016
  • Greenhouse gas (GHG) emissions caused by fossil fuels consumption is one of the challenging issues worldwide. Renewable energy source (RES)-based energy supply system can be a promising alternative to the current fossil fuel-based system. In this study, we propose an optimization approach for designing a stand-alone hybrid energy supply system using RES and evaluating economic performances of the energy systems. The suggested approach is used to answer the questions; i) what technology is suitable to various demand sectors in different regions, and ii) how does it cost to meet the demand in term of the levelized costs of energy (LCOE). We illustrate the applicability of the proposed approach by applying to the design problem of energy supply systems for residential, agricultural and commercial sectors of Korea. As the results of LCOE analysis, for the residential sector has the LCOE ranging of $0.37~$0.44/kWh, the agricultural sector of $0.15~$0.61/kWh and the commercial sector of $0.12~$0.28/kWh.

Linear Shallow Water Equations for Waves with Damping (파랑 에너지 감쇠가 있는 경우의 선형천수방정식)

  • Jung, Tae-Hwa;Lee, Chang-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Wave characteristics in the presence of energy damping are investigated using the linear shallow water equations. To get the phase and energy velocities, geometric optics approach is used and then these values are validated through numerical experiments. Energy damping affects wave height, phase and energy velocities which result in wave transformation. When the complex wavenumber is used by the Eulerian approach, it is found that the phase velocity decreases as the damping increases while the energy velocity increases showing higher values than the phase velocity. When the complex angular frequency is used by the Lagrangian approach, the energy-damping wave group is found to propagate in the energy velocity. The energy velocity is found to affect shoaling and refraction coefficient which is verified through numerical experiments for waves on a plane slope.

Bilateral Controller for Time-varying Communication Delay: Time Domain Passivity Approach (시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기 : 시간영역 수동성 기법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1099-1105
    • /
    • 2007
  • In this paper, modified two-port time-domain passivity approach is proposed for stable bilateral control of teleoperators under time-varying communication delay. We separate input and output energy at each port of a bilateral controller, and propose a sufficient condition for satisfying the passivity of the bilateral controller including time-delay. Output energy at the master port should be less than the transmitted input energy from the slave port with time-delay, and output energy at the slave port should be less than the transmitted input energy from the master port with time-delay. For satisfying above two conditions, two passivity controllers are attached at each port of the bilateral controller. A packet reflector with wireless internet connection is used to introduce serious time-varying communication delay of teleoperators. Average amount of time-delay was about 190(msec) for round trip, and varying between 175(msec) and 275(msec). Moreover some data packet was lost during the communication due to UDP data communication. Even under the serious time-varying delay and packet loss communication condition, the proposed approach can achieve stable teleoperation in free motion and hard contact as well.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

Transverse buckling analysis of spatial diamond-shaped pylon cable-stayed bridge based on energy approach

  • Zheng, Xing;Huang, Qiao;Zheng, Qing-gang;Li, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.123-134
    • /
    • 2022
  • The stability of cable-stayed bridges is an important factor considered during design. In recent years, the novel spatial diamond-shaped bridge pylon has shown its advantages in various aspects, including the static response and the stability performance with the development of cable-stayed bridge towards long-span and heavy-load. Based on the energy approach, this paper presents a practical calculation method of the completed state stability of a cable-stayed bridge with two spatial diamond-shaped pylons. In the analysis, the possible transverse buckling of the girder, the top pylon column, and the mid pylon columns are considered simultaneously. The total potential energy of the spatial diamond-shaped pylon cable-stayed bridge is calculated. And based on the principle of stationary potential energy, the transverse buckling coefficients and corresponding buckling modes are obtained. Furthermore, an example is calculated using the design parameters of the Changtai Yangtze River Bridge, a 1176 m cable-stayed bridge under construction in China, to verify the effectiveness and accuracy of the proposed method in practical engineering. The critical loads and the buckling modes derived by the proposed method are in good agreement with the results of the finite element method. Finally, cable-stayed bridges varying pylon and girder stiffness ratios and pylon geometric dimensions are calculated to discuss the applicability and advantages of the proposed method. And a further discussion on the degrees of the polynomial functions when assuming buckling modes are presented.