• Title/Summary/Keyword: Energy approach

Search Result 3,331, Processing Time 0.031 seconds

The critical angle of seismic incidence of transmission tower-line system based on wavelet energy method

  • Tian, Li;Dong, Xu;Pan, Haiyang;He, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.387-398
    • /
    • 2019
  • On the basis that ground motions may arrive at a structure from any horizontal direction and that different directions of seismic incidence would result in different structural dynamic responses, this paper focuses on orienting the crucial seismic incidence of transmission tower-line systems based on the wavelet energy method. A typical transmission tower-line system is chosen as the case study, and two finite element (FE) models are established in ABAQUS, with and without consideration of the interaction between the transmission towers and the transmission lines. The mode combination frequency is defined by considering the influence of the higher-order modes of the structure. Subsequently, wavelet transformation is performed to obtain the total effective energy input and the effective energy input rate corresponding to the mode combination frequency to further judge the critical angle of seismic incidence by comparing these two performance indexes under different seismic incidence angles. To validate this approach, finite element history analysis (FEHA) is imposed on both FE models to generate comparative data, and good agreement is found. The results demonstrate that the wavelet energy method can forecast the critical angle of seismic incidence of a transmission tower-line system with adequate accuracy, avoiding time-consuming and cumbersome computer analysis. The proposed approach can be used in future seismic design of transmission tower-line systems.

Thermally reused solar energy harvesting using current mirror cells

  • Mostafa Noohi;Ali Mirvakili;Hadi Safdarkhani;Sayed Alireza Sadrossadat
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.519-533
    • /
    • 2023
  • This paper implements a simultaneous solar and thermal energy harvesting system, as a hybrid energy harvesting (HEH) system, to convert ambient light into electrical energy through photovoltaic (PV) cells and heat absorbed in the body of PV cells. Indeed, a solar panel equipped with serially connected thermoelectric generators not only converts the incoming light into electricity but also takes advantage of heat emanating from the light. In a conventional HEH system, the diode block is used to provide the path for the input source with the highest value. In this scheme, at each time, only one source can be handled to generate its output, while other sources are blocked. To handle this challenge of combining resources in HEH systems, this paper proposes a method for collecting all incoming energies and conveying its summation to the load via the current mirror cells in an approach similar to the maximum power point tracking. This technique is implemented using off-the-shelf components. The measurement results show that the proposed method is a realistic approach for supplying electrical energy to wireless sensor nodes and low-power electronics.

District Energy Use Patterns and Potential Savings in the Built Environment: Case Study of Two Districts in Seoul, South Korea

  • Lee, Im Hack;Ahn, Yong Han;Park, Jinsoo;Kim, Shin Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • Energy efficiency is vital to improve energy security, environmental and social sustainability, and economic performance. Improved energy efficiency also mitigates climate change by lowering greenhouse gas (GHG) emissions. Buildings are the single largest industrial consumer of energy and are therefore key to understanding and analyzing energy consumption patterns and the opportunities for saving energy at the district level in urban environments. This study focused on two representative boroughs in the major metropolitan area of Seoul, South Korea as a case study: Gandong-gu, a typical residential district, and Jung-gu, a typical commercial district. The sources of the energy supplied to the boroughs were determined and consumption patterns in different industry sectors in Seoul used to identify current patterns of energy consumption. The study analyzed the energy consumption patterns for five different building categories and four different sectors in the building using a bottom-up energy modeling approach. Electricity and gas consumption patterns were recorded for different building categories and monthly ambient temperatures in the two boroughs. Finally, a logarithmic equation was developed to describe the correlation between commercial activity and cooling energy intensity in Jung-gu, the commercial district. Based on these results, recommendations are made regarding the current energy consumption patterns at the district level and government energy policies are suggested to reduce energy consumption and, hence, greenhouse gas emissions, in both commercial and residential buildings.

Hydrodynamic approach to cosmic ray acceleration

  • KO CHUNG-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.289-291
    • /
    • 2001
  • To study the structure and dynamics of a cosmic-ray-plasma system, hydrodynamic approach is a fairly good approximation. In this approach, there are three basic energy transfer mechanisms: work done by the plasma flow against pressure gradients, cosmic ray streaming instability and stochastic acceleration. The interplay between these mechanisms gives a range of structures. We present some results of different version of the hydrodynamic approach, e.g., flow structure, injection, instability, acceleration with and without shocks.

  • PDF

Can Index Decomposition Analysis Give a Clue in Understanding Industry's Greenhouse Gas Footprint? (산업의 온실가스 배출 행태 이해를 위한 지수분해분석 적합성 실증 연구)

  • Chung, Whan-Sam;Tohno, Susumu
    • Environmental and Resource Economics Review
    • /
    • v.24 no.1
    • /
    • pp.55-84
    • /
    • 2015
  • Korea is one of the few OECD countries having no binding Greenhouse gas (GHG) emissions reduction obligations under the Kyoto Protocol. Korea is going to enforce a powerful greenhouse gas emissions control to the industry from 2015. Current GHG reduction policies do not take into account the trade-off between economic growth and GHG mitigation, this approach will not be sustainable. Sectoral approach, considering industry by industry may be more eco-friend approach. This study verified the validity of the analysis results counted from whole procedure of energy input-output analysis and decomposition analysis to sector 'Organic basic chemical products' and 'Cement and concrete products'. Empirical test was performed using changes in energy consumption, production, process improvements and new facilities. Although the results showed unstable fluctuations from Divisia index decomposition analysis, it was verified that the entire procedure can provide a clue in understanding of the industry's energy and GHG footprint.

Evaluation of Discharge Current Employing Generalized Energy Method and Integral Ohm's Law Using Finite Element Method (유한요소법을 이용한 일반화된 에너지법과 옴의 적분법에 의한 방전 전류 계산)

  • Lee, Ho-Young;Kim, Hong-Joon;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.357-361
    • /
    • 2011
  • The terminal current in voltage driven systems is an essential role for characterizing the pattern of electric discharge such as corona, breakdown, etc. Until now, to evaluate this terminal current, Sato's equation has been widely used in areas of high voltage and plasma discharge. Basically Sato's equation was derived by using the energy balance equation and its final form described physical meaning explicitly. To give more general abilities in Sato's equation, we present a generalized approach by directly using the Poynting's theorem incorporating the finite element method. When the magnetic field effect or the time-dependent voltage source is considered, this generalized energy method can be easily applicable to those problems with any dielectric media such as gas, fluid, and solid. As an alternative approach, the integral Ohm's law resulting in small numerical errors has an ability to be applied to multi-port systems. To test the generalized energy method and integral Ohm's law, first, the results from two prosed methods were compared to those from Sato's approach and an analytic solution in parallel plane electrodes. After verification, the generalized method was applied to the tip-sphere electrodes for evaluating the terminal current with three carriers and the Fowler-Nordheim field emission condition. From these results, we concluded that the generalized energy method can be a consistent technique for evaluating the discharge current with various dielectric materials or large magnetic field.

Establishment of a Fuzzy Multi-criteria Decision Making Method Framework for Selecting R&D Programs of Energy Technologies (에너지기술 R&D 프로그램 선정을 위한 퍼지 다기준의사결정 프레임워크 수립)

  • Lee, Seong-Kon;Mogi, Gento;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.22-30
    • /
    • 2009
  • Energy environment has been changing rapidly such as the fluctuation of oil prices and the effect on UNFCCC. Oil price change affects Korea's economy heavily due to her poor natural resources and large dependence of consumed energy resources. Korea takes the 4th place of importing the crude oil and 9th place in $CO_2$ emissions with the 1st place of $CO_2$ emissions increasing rate. Considering the current statue of Korea including oil price change and UNFCCC, Korea will be expected to be the Annex I nation due to Korean energy environments and the quantity of $CO_2$ emission. Energy technology development is a crucial key to cope with Korea's national energy security and environments. In this study, we establish the framework, which allocates the relative weights of assessment criteria and sub-criteria, for assessing and selecting R&D programs of energy technologies strategically. We integrated fuzzy theory and analytic hierarchy process (AHP) approach since the fuzzy AHP approach reflects the vagueness of human thoughts and perception effectively as making pairwise comparisons of criteria and alternatives. The fundamental data of this research results will support R&D planning phase for policy-makers and the production of well focused R&D outcomes.