• Title/Summary/Keyword: Energy applications

Search Result 3,737, Processing Time 0.028 seconds

Pre-Feasibility Study of Stand-Alone Hybrid Energy System for Applications in a Lab (실험실용 독립형 하이브리드 에너지 시스템의 가능성 연구)

  • Li, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.627-631
    • /
    • 2009
  • As renewable and sustainable energy, solar energy and wind energy have advantages in reducing the pollution sources. The paper presents a hybrid system which includes the solar cell and the wind generator. HOMER provides a platform to design and simulate the power system and then to choose the optimization results. This paper simulates with the HOMER and performs a pre-feasibility study of stand-alone hybrid energy systems for applications in a lab.

Spatiotemporal Applications for Managing New&Renewable Energy Resources (신재생에너지 자원 관리를 위한 시공간 응용 기술)

  • Lee, Yang-Koo;Ryu, Keun-Ho;Kim, Kwang-Deuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.327-331
    • /
    • 2008
  • In this paper, we argue that new&renewable energy resources are difficult to be managed with GIS technology due to their spatiotemporal features, and suggest that spatiotemporal database and sensor network can be applied to the new&renewable energy management system as advanced technology. To give the motivated issues, we introduce and analyze the concept of the spatiotemporal database and sensor network, and the case studies in each applications.

  • PDF

Energy Generating Self-cooling Greenhouse (열-전기 병합 에너지 생산 겸 자체 냉각 온실)

  • Kleinwachter, Jurgen;Chung, Mo;Kim, Jong-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.584-587
    • /
    • 2006
  • An energy generating greenhouse based on fluoropolymer envelope and fresnel lens is proposed. The outstanding properties of the fluoropolymer films make them very suitable for large scale solar applications. Extremely high optical transmission over the whole solar spectrum, combined with mechanical strength, and durability allows us to design a highly optimized greenhouses for both plant growing and energy generation. Systems such as photovoltaic triple junction cells are especially attractive since they have up to 35% efficiency with much less cell material when the sun beam is focused with concentrators such as fresnel lenses. Cooling such devices will enhance the efficiency and provide useful thermal energy that could be further utilized for various applications depending on the local demands. This article introduces the basic ideas and principles of the energy generating greenhouses as a first step towards the actual deployment of such systems under Korean environment.

  • PDF

Analysis of Energy Consumption and Processing Delay of Wireless Sensor Networks according to the Characteristic of Applications (응용프로그램의 특성에 따른 무선센서 네트워크의 에너지 소모와 처리 지연 분석)

  • Park, Chong Myung;Han, Young Tak;Jeon, Soobin;Jung, Inbum
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.399-407
    • /
    • 2015
  • Wireless sensor networks are used for data collection and processing from the surrounding environment for various applications. Since wireless sensor nodes operate on low computing power, restrictive battery capacity, and low network bandwidth, their architecture model has greatly affected the performance of applications. If applications have high computation complexity or require the real-time processing, the centralized architecture in wireless sensor networks have a delay in data processing. Otherwise, if applications only performed simple data collection for long period, the distributed architecture wasted battery energy in wireless sensors. In this paper, the energy consumption and processing delay were analyzed in centralized and distributed sensor networks. In addition, we proposed a new hybrid architecture for wireless sensor networks. According to the characteristic of applications, the proposed method had the optimal number of wireless sensors in wireless sensor networks.

Energy-Aware System Lifetime Maximization Algorithm in Multi-Hop Sensor Network (멀티홉 센서 네트워크에서 에너지 상황을 고려한 시스템 수명 최대화 알고리즘)

  • Kim, Tae-Rim;Kim, Bum-Su;Park, Hwa-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.339-345
    • /
    • 2013
  • This paper addresses the system lifetime maximization algorithm in multi-hop sensor network system. A multi-hop sensor network consists of many battery-driven sensor nodes that collaborate with each other to gather, process, and communicate information using wireless communications. As sensor-driven applications become increasingly integrated into our lives, we propose a energy-aware scheme where each sensor node transmits informative data with adaptive data rate to minimize system energy consumption. We show the optimal data rate to maximize the system lifetime in terms of remaining system energy. Furthermore, the proposed algorithm experimentally shows longer system lifetime in comparison with greedy algorithm.

Development of High Voltage and High Energy Density Capacitor for Pulsed Power Application (펄스파워용 고전압 고에너지밀도 커패시터 개발)

  • 이병윤;정진교;이우영;박경엽;이수휘;김영광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.203-210
    • /
    • 2003
  • This paper describes high voltage and high energy density capacitor developed for pulsed power applications. The rated voltage of the developed capacitor is DC 22 [kV], the capacitance is 206 [$\mu$F] and the energy density is about 0.7 [kJ/kg]. Polypropylene film and kraft paper were used as the dielectrics. The ratio of the thickness of each dielectric material which consists of the composite dielectric structure, stacking factor and the termination method were determined by the charging and discharging tests on model capacitors. In terms of energy density, the developed capacitor has higher energy density compared with the products of foreign leading companies. In addition, it has been proved that the life expectancy can be more over 2000 shots through the charging and discharging test. The voltage reversal factor was 20%. This capacitor can be used as numerous discharge applications such as military, medical, industrial fields.

Estimating free-living human energy expenditure: Practical aspects of the doubly labeled water method and its applications

  • Park, Jonghoon;Kazuko, Ishikawa-Takata;Kim, Eunkyung;Kim, Jeonghyun;Yoon, Jinsook
    • Nutrition Research and Practice
    • /
    • v.8 no.3
    • /
    • pp.241-248
    • /
    • 2014
  • The accuracy and noninvasive nature of the doubly labeled water (DLW) method makes it ideal for the study of human energy metabolism in free-living conditions. However, the DLW method is not always practical in many developing and Asian countries because of the high costs of isotopes and equipment for isotope analysis as well as the expertise required for analysis. This review provides information about the theoretical background and practical aspects of the DLW method, including optimal dose, basic protocols of two-and multiple-point approaches, experimental procedures, and isotopic analysis. We also introduce applications of DLW data, such as determining the equations of estimated energy requirement and validation studies of energy intake.

Electrical Modeling of Renewable Energy Sources and Energy Storage Devices

  • Williamson, Sheldon S.;Rimmalapudi, S.Chowdary;Emadi, Ali
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.117-126
    • /
    • 2004
  • This paper focuses on the electrical modeling techniques of renewable energy sources and storage devices such as batteries, fuel cells (FCs), photovoltaic (PVs) arrays, ultra-capacitors (UCs), and flywheel energy storage systems (FESS). All of these devices are being investigated recently for their typical storage and supply capabilities for various industrial applications. Hence, these devices must be modeled precisely taking into account the concerned practical issues. An obvious advantage of electrically modeling these renewable energy sources and storage devices is the fact that they can easily be simulated in real-time in any CAD simulation program. This paper reviews several types of suitable models for each of the above-mentioned devices and the most appropriate model amongst them is presented. Furthermore, a few important applications of these devices shall also be highlighted.

Current Status of Nanostructured Thermoelectric Materials for Mid-High Temperature Applications (나노구조 기반 중·고온용 열전소재 연구 동향)

  • Nam, Woo Hyun;Shin, Weon Ho;Cho, Jung Young;Seo, Won-Seon
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.133-145
    • /
    • 2019
  • Thermoelectric energy conversion has attracted much attention because it can convert heat into electric power directly through solid state device and vice versa. Current research is aimed at increasing the thermoelectric figure of merit (ZT ) by improving the power factor and reducing the thermal conductivity. Although there have been significant progresses in increasing ZT of material systems composed of Bi, Te, Ge, Pb, and etc. over the last few decades, their relatively high cost, toxicity, and the scarcity have hindered further development of thermoelectrics to expand practical applications. In this paper, we review the current status of research in the fields of nanostructured thermoelectric materials with eco-friendly and low cost elements, such as skutterudites and oxides, for mid-high temperature applications, highlighting the strategies to improve thermoelectric performance.