• Title/Summary/Keyword: Energy Use Patterns

Search Result 179, Processing Time 0.033 seconds

Comparison of the Performance of Clustering Analysis using Data Reduction Techniques to Identify Energy Use Patterns

  • Song, Kwonsik;Park, Moonseo;Lee, Hyun-Soo;Ahn, Joseph
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.559-563
    • /
    • 2015
  • Identification of energy use patterns in buildings has a great opportunity for energy saving. To find what energy use patterns exist, clustering analysis has been commonly used such as K-means and hierarchical clustering method. In case of high dimensional data such as energy use time-series, data reduction should be considered to avoid the curse of dimensionality. Principle Component Analysis, Autocorrelation Function, Discrete Fourier Transform and Discrete Wavelet Transform have been widely used to map the original data into the lower dimensional spaces. However, there still remains an ongoing issue since the performance of clustering analysis is dependent on data type, purpose and application. Therefore, we need to understand which data reduction techniques are suitable for energy use management. This research aims find the best clustering method using energy use data obtained from Seoul National University campus. The results of this research show that most experiments with data reduction techniques have a better performance. Also, the results obtained helps facility managers optimally control energy systems such as HVAC to reduce energy use in buildings.

  • PDF

Occupants Control Patterns of Indoor Shading Devices in Apartment Buildings (공동주택 거주자의 실내 차양장치 사용행태에 관한 연구)

  • Lee, Yoon Jeong;Kim, Jeong-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.12-20
    • /
    • 2014
  • There is no comprehensive consensus of the control patterns people op::rate shadings or the motivating factors that influence their decisions. Patterns of shading devices use can affect the energy consumption of buildings. Therefore, this study aims to analyze shading device usage patterns based on the physical factors that can affect occupants behavior. First, control patterns of indoor shading devices in apartment buildings were monitored by taking pictures. Next, frequency of shading device use together with their shading portions was analyzed based on two physical factors such as window orientation and floor level. The results showed that about 35% of the monitored apartment buildings utilized indoor shading devices. Also, the south-facing apartments were more dynamically used than their east-facing counterparts. On the contrary, there was no general trend in regards to the shading operation patterns.

Analysis of standby power for enhancing the energy efficiency of a hotel guestroom - Focusing on check-out status - (호텔 객실의 에너지 효율화를 위한 대기전력 분석 - 체크아웃 상태를 중심으로 -)

  • Lee, Junsoo;Koo, Choongwan
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • The issue of hotel energy use is growing more significant as the hotel industry expands. It is important to take into account the electrical installation and space-specific features in a room unit in order to comprehend the energy consumption of a hotel guestroom. In light of this, this study aimed to analyze standby power for enhancing the energy efficiency of a hotel guestroom during check-out status. This study was conducted in three steps: (i) data collection; (ii) analysis of energy consumption patterns; and (iii) analysis of energy efficiency improvement plan. The main findings of this study can be summarized as follows. First, 32.24% of energy was used in fan coil unit) during check-out status. Second, a hotel guestroom had a 4.30% energy saving potential, based on energy consumption patterns during check-out status. This study can contribute to support hotel management to operate guestrooms differently by helping them identify patterns in energy use and realize potential savings.

A Study on the Energy and Water Consumption and their Patterns as Vertical Locations of Apartment Housing Units (아파트 단위 세대의 수직 위치 별 에너지 및 물 사용 규모와 패턴에 관한 연구)

  • Song, Dong-Hun;Kim, Kyung-Tae;Lee, Seung-Jun;Shin, Hyun-Ik
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.33 no.12
    • /
    • pp.53-63
    • /
    • 2017
  • The purpose of this study is to present an integrated analysis for energy use and its patterns as vertical locations of the dwelling units in apartment buildings which are located in an urban area and constructed by a renowned contractor. In order to enhance the effectiveness of the method, the original data of electricity, water, and gas bills which directly reflect the energy use are sorted and analyzed into several groups as vertical locations in each building. And also, by use of comparing and contrasting the data on a monthly and yearly basis, the accuracy of analyses for seasonal energy use and its patterns is strengthened. Comparative analyses used in this study describe the results that vertical locations of dwelling units do not have much influence on electricity and water usage, but are closely related with gas usage for a heating season. According to the analysis of gas usage, the units on the ground and right above pilotis need enhancement in the insulations for heating to mitigate energy loss. Also, the analysis for the middle floor units in each group describe the fact that the gas usage of the units on the ground is consumes 1.5 times greater than that of the typical floors. Therefore, enhanced insulation strategies need to be considered against the adverse condition that the heat loss increases as the wall facing the outside air increases or as the wind velocity increases through the pilotis.

District Energy Use Patterns and Potential Savings in the Built Environment: Case Study of Two Districts in Seoul, South Korea

  • Lee, Im Hack;Ahn, Yong Han;Park, Jinsoo;Kim, Shin Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • Energy efficiency is vital to improve energy security, environmental and social sustainability, and economic performance. Improved energy efficiency also mitigates climate change by lowering greenhouse gas (GHG) emissions. Buildings are the single largest industrial consumer of energy and are therefore key to understanding and analyzing energy consumption patterns and the opportunities for saving energy at the district level in urban environments. This study focused on two representative boroughs in the major metropolitan area of Seoul, South Korea as a case study: Gandong-gu, a typical residential district, and Jung-gu, a typical commercial district. The sources of the energy supplied to the boroughs were determined and consumption patterns in different industry sectors in Seoul used to identify current patterns of energy consumption. The study analyzed the energy consumption patterns for five different building categories and four different sectors in the building using a bottom-up energy modeling approach. Electricity and gas consumption patterns were recorded for different building categories and monthly ambient temperatures in the two boroughs. Finally, a logarithmic equation was developed to describe the correlation between commercial activity and cooling energy intensity in Jung-gu, the commercial district. Based on these results, recommendations are made regarding the current energy consumption patterns at the district level and government energy policies are suggested to reduce energy consumption and, hence, greenhouse gas emissions, in both commercial and residential buildings.

A Study on the Energy Use Behavior according to Apartment Residents' Characteristics (공동주택 거주자의 특성에 따른 에너지사용행태에 관한 연구)

  • Cho, Sung-Heui;Jung, Su-Jin
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2011.04a
    • /
    • pp.116-120
    • /
    • 2011
  • With population growth and quality of life improvement, household energy use also has increased. Under this circumstances, consumers are increasingly required to seek for efficient ways of energy saving. However, precedent studies have largely overlooked energy consumers' consumption behavior, and particularly little research has been conducted on energy consumption or saving patterns of residents living in apartments, which account for over 50% of the Korean housing market. Therefore, this study examined apartment residents' energy use behavior according to apartment residents' characteristics in order to efficient energy use and management. To this examination, survey was conducted of housewives living in apartments in Busan, and 403 data were analyzed by the SPSS WIN 12.0 program. With respect to their energy behavior according to characteristics of subjects, it was different depending on income, housing size, age, the length of residence, and the education standard. When higher income group and larger housing size group, residents were not doing 'passive saving' and 'comfort oriented.' When younger, they were 'comfort oriented.' When well-educated, they were 'comfort oriented.' Also, with regard to the length of residence, significant difference was found. The results of this study can be utilized as effective guidelines in efficient management, policy making, and education method reflecting energy use behavior of energy users.

  • PDF

A Study on Energy Use Monitoring and Analysis Case for Small and Medium-Sized Buildings (중소형 건물에 적합한 에너지사용량 모니터링 및 분석 사례 연구)

  • Lee, Hye-Jin;Kim, Myung-Jin;Kim, Jin-Ho;Lee, Dongho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.499-509
    • /
    • 2019
  • This paper discusses energy use monitoring and analysis as part of a study on a low-cost energy supply management system that links an existing database with weather information with no real-time monitor for energy demand of buildings using renewable energy, generator and energy storage systems. This study is targeted at small and medium-sized buildings and aims to monitor energy use with a small number of sensors at low cost by applying an energy management system (EMS). The present study can help overcome the limitations of high-cost EMS applied to large commercial and public buildings. We developed current, indoor temperature and human motion sensors and installed them in an office of a company in a sample building. Through these sensors, we analyzed energy use patterns and the effects of weather information and human motion on the energy use. Furthermore, we analyzed the correlations between the total KEPCO energy use of the sample building and weather by comparing these two data. The results showed that the office energy use of a company was more affected by human motions than by weather information. The comparison between the total energy use of the Building and weather information found that external temperature had an effect on the energy use.

Human Fibroblast-derived Multi-peptide Factors and the Use of Energy-delivering Devices in Asian Patients

  • Suh, Sang Bum;Ahn, Keun Jae;Chung, Hye Jin;Suh, Ji Youn;Cho, Sung Bin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • Human fibroblast-derived multi-peptide factors (MPFs) have been used during treatments with energy-delivering modalities to enhance energy-induced tissue reactions. Human fibroblast-derived MPFs, which include a range of growth factors and chemoattractive factors, activate and recruit fibroblasts and endothelial cells, as well as promote extracellular matrix deposition, all of which are crucial to wound repair. Interestingly, fibroblasts from different species or anatomical sites exhibit distinct transcriptional properties with high heterogeneity. In addition, the patterns of MPF secretion can differ under a range of experimental conditions. Therefore, the use of allogeneic fibroblasts and proper cultivation thereof are necessary to obtain MPFs that can enhance the epithelial-mesenchymal interactions during wound repair. Moreover, energy-delivering devices should be selected according to evidence demonstrating their therapeutic efficacy and safety on a pathological skin condition and the major target skin layers. This paper reviewed the histologic patterns of post-treatment tissue reactions elicited by several energy sources, including non-ablative and ablative fractional lasers, intense focused ultrasound, non-invasive and invasive radiofrequency, picosecond-domain lasers, and argon and nitrogen plasma. The possible role of the immediate application of human fibroblast-derived MPFs during wound repair was proposed.

Development of Bottom-up model for Residential Energy Consumption by Use (생활행위 분류에 의한 가정부문 용도별 에너지소비 분석모형 개발)

  • Lim, Ki Choo
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • There was a dire need to compile data about energy consumption data by use to analyze residential energy consumption patterns relating to changes in lifestyles, or changes in life behavior. Accordingly, bottom-up model for residential energy consumption by residential use was developed by life behavior classification in an attempt to analyze energy consumption. This paper multiplied each appliance's running times by each appliance by life behavior and built a residential bottoms-up model to figure out the energy consumption of each household. The uses by life behavior were broken down into lighting, heating, cooling, entertainment, obtaining information, hygiene, and cooking.

Analysis of Sectoral Energy Use Pattern with Energy Input-Output Approach (에너지산업연관분석을 이용한 산업별 에너지 사용 pattern 분석)

  • Chung, Whan-Sam;Tohno, Susumu;Shim, Sang-Yul
    • Journal of Energy Engineering
    • /
    • v.17 no.3
    • /
    • pp.145-152
    • /
    • 2008
  • Approaching to the era of high energy price and energy sources scarcity, the demand for governmental intervention to mitigate the short-term shocks is highly increasing. When any energy policy is implemented, double-side effects would be derived. To begin with positive aspect, by decreasing energy import, unnecessary currency outflow can be prevented and the resultant saved money will be appropriately allocated. Furthermore, industrial competitiveness will be assured by reducing use of expensive energy. On the contrary, inappropriate energy saving policy may lead to unexpected negative effects that would hinder improvement in productivity due to indiscreet replacing energy by equipments. In order to enhance effectiveness of energy policy, efforts should be made in advance to understand the energy use pattern of each industry sector which composes the economy. Therefore, in this study, an energy input-output method, one of the macroscopic approaches, is applied to analyze energy use patterns of each industry sector in Korea. Using this method, a quantitative assessment is performed to obtain the energy use intensity and the amount of energy uses with respect to energy types.