• 제목/요약/키워드: Energy Technology

검색결과 23,754건 처리시간 0.049초

An optimization design study of producing transuranic nuclides in high flux reactor

  • Wei Xu;Jian Li;Jing Zhao;Ding She;Zhihong Liu;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2723-2733
    • /
    • 2023
  • Transuranic nuclides (such as 238Pu, 252Cf, 249Bk, etc.) have a wide range of application in industry, medicine, agriculture, and other fields. However, due to the complex conversion chain and remarkable fission losses in the process of transuranic nuclides production, the generation amounts are extremely low. High flux reactor with high neutron flux and flexible irradiation channels, is regarded as the promising candidate for producing transuranic nuclides. It is of great significance to increase the conversion ratio of transuranic nuclides, resulting in higher efficiency and better economy. In this paper, we perform an optimization design evaluation of producing transuranic nuclides in high flux reactor, which includes optimization design of irradiation target and influence study of reactor core loading. It is demonstrated that the production rate increases with appropriately determined target material and target structure. The target loading scheme in the irradiation channel also has a significant influence on the production of transuranic nuclides.

에너지연구개발(R&D)위한 기술계통도(Technology Tree) 기획방법론 활용 사례 - 에너지저장 기술 중심으로 (A Case Study on the Technology Tree Methodology of Energy R&D)

  • 강근영;윤가혜;김동환
    • 신재생에너지
    • /
    • 제9권2호
    • /
    • pp.40-50
    • /
    • 2013
  • Government spending on research and development increased continuously is much more important to decision-making methodology for rational investment. Rely on a group of minority experts in the application of a general methodology, a tipping effect occur in specific technology field or difficult balanced procedure and objective control to maintain. This paper presents a qualitative-quantitative methodology to avoid such risks by utilizing Technology-Tree pertaining to energy R&D planning of the government Energy Technology Development program. Especially Energy Technology Development program "energy storage system" is applied to the analysis of Technology-Tree, mapping and analysis of existing government-supported projects during the recent 5 years, is derived essential missing elements of the technology value chain. This study suggests that significant evidence is utilized for improving efficiency of government R&D budget considering the importance of technology, domestic research-based and so forth, could be used to implement the R&D project planning.

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

Activating needle coke to develop anode catalyst for direct methanol fuel cell

  • Park, Young Hun;Im, Ui-Su;Lee, Byung-Rok;Peck, Dong-Hyun;Kim, Sang-Kyung;Rhee, Young Woo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • 제20권
    • /
    • pp.47-52
    • /
    • 2016
  • Physical and electrochemical qualities were analyzed after KOH activation of a direct methanol fuel cell using needle coke as anode supporter. The results of research on support loaded with platinum-ruthenium suggest that an activated KOH needle coke container has the lowest onset potential and the highest degree of catalyst activity among all commercial catalysts. Through an analysis of the CO stripping voltammetry, we found that KOH activated catalysis showed a 21% higher electrochemical active surface area (ECSA), with a value of 31.37 m2 /g, than the ECSA of deactivated catalyst (25.82 m2 /g). The latter figure was 15% higher than the value of one specific commercial catalyst (TEC86E86).