• Title/Summary/Keyword: Energy Supply-Chain

Search Result 84, Processing Time 0.025 seconds

Low Carbonization Technology & Traceability for Sustainable Textile Materials (지속가능 섬유 소재 추적성과 저탄소화 공정)

  • Min-ki Choi;Won-jun Kim;Myoung-hee Shim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.673-689
    • /
    • 2023
  • To realize the traceability of sustainable textile products, this study presents a low-carbon process through energy savings in the textile material manufacturing process. Traceability is becoming an important element of Life Cycle Assessment (LCA), which confirms the eco-friendliness of textile products as well as supply chain information. Textile products with complex manufacturing processes require traceability of each step of the process to calculate carbon emissions and power usage. Additionally, an understanding of the characteristics of the product planning-manufacturing-distribution process and an overall understanding of carbon emissions sources are required. Energy use in the textile material manufacturing stage produces the largest amount of carbon dioxide, and the amount of carbon emitted from processes such as dyeing, weaving and knitting can be calculated. Energy saving methods include efficiency improvement and energy recycling, and carbon dioxide emissions can be reduced through waste heat recovery, sensor-based smart systems, and replacement of old facilities. In the dyeing process, which uses a considerable amount of heat energy, LNG, steam can be saved by using "heat exchangers," "condensate management traps," and "tenter exhaust fan controllers." In weaving and knitting processes, which use a considerable amount of electrical energy, about 10- 20% of energy can be saved by using old compressors and motors.

Physiology of Small and Large Intestine of Swine - Review -

  • Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.608-619
    • /
    • 1998
  • The small and the large intestine of swine represent the organs that extract nutrients from feedstuffs through digestion and fermentation and that allow their absorption and incorporation into the blood circulation. Special attention is directed towards the small intestine of young pigs since the transition to a solid diet at weaning exerts major impacts on the structural and functional integrity of the small intestine. Dietary factors involved in postweaning changes of gut morphology and biochemistry such as removal of bioactive compounds in sows milk at weaning, anti-nutritional factors in weaner diets, dietary fiber and the role of voluntary feed intake will be elucidated. The microbial function of the large intestine which is carried out by a diverse population of microorganisms is dependent on substrate availability. Short chain fatty acids as main fermentation products contribute to the energy supply of the host but they are also important for the maintenance of the morphological and functional integrity of the epithelium in the colon. As a result of bacterial nitrogen assimilation in the large intestine, nitrogen is shifted from the urinary to the fecal excretion route thus saving metabolic energy to the pig because less ammonia would become available for conversion to urea.

CO2 Emission from the Rail and Road Transport using Input-Output Analysis: an Application to South Korea

  • Pruitichaiwiboon, Phirada;Lee, Cheul-Kyu;Lee, Kun-Mo
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • This paper deals with the evaluation of environmental impact of rail and road transport in South Korea. A framework of energy input-output analysis is employed to estimate the total energy consumption and $CO_2$ emission in acquiring and using a life cycle of passenger and freight transport activity. The reliability of $CO_2$ emission based on uncertainty values is assessed by means of a Monte Carlo simulation. The results show that on a passenger-kilometers basis, passenger roads have life cycle emissions about 1.5 times those of rail, while that ratio is ten times greater when the scope of evaluation regards the tailpipe. In the case of freight transport, on a million ton-kilometers basis, the value for road mode is estimated to be about three times compared to those of rail mode. The results also show that the main contribution of $CO_2$ emission for road transport is the operation stage, accounting for 70%; however, the main contribution for rail transport is the construction and supply chain stage, accounting for over 50% emission.

An Evolutionary Algorithm based Distribution Methodology for Small-scale Biofuel Energy Companies (중소 바이오연료 기업의 물류 문제 해결을 위한 진화적 알고리즘 기반 배송 방법론)

  • Kim, Soo whan;Ryu, Jun-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.804-810
    • /
    • 2018
  • Most biofuel companies are in a small scale with short experience of operating the entire supply chain. In order to compete with existing fossil fuel competitors, renewable companies should be more responsive to demand. It is financially important to reflect this in the decision supporting system of the company. This paper addresses an evolutionary algorithm based methodology for the distribution problem of renewable energies. A numerical example was presented to illustrate the applicability of the proposed methodology with some remarks.

Experimental study on the cryogenic thermal storage unit (TSU) below -70 ℃

  • Byeongchang Byeon;Kyoung Joong Kim;Sangkwon Jeong;Dong min Kim;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Seong Woo Lee;Keun Tae Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.20-24
    • /
    • 2024
  • Over the past four years, as the COVID-19 pandemic has struck the world, cold chain of COVID-19 vaccination has become a hot topic. In order to overcome the pandemic situation, it is necessary to establish a cold chain that maintains a low-temperature environment below approximately 203K (-70℃), which is the appropriate storage temperature for vaccines, from vaccine suppliers to local hospitals. Usually, cryocoolers are used to maintain low temperatures, but it is difficult for small-scale local distribution to have cryocooler due to budget and power supply issues. Accordingly, in this paper, a cryogenic TSU (Thermal storage unit) system for vaccination cold chain is designed that can maintain low temperatures below -70℃C for a long time without using a cryocooler. The performance of the TSU system according to the energy storage material for using as TSU is experimentally evaluated. In the experiments, four types of cold storage materials were used: 20% DMSO aqueous solution, 30% DMSO aqueous solution, paraffin wax, and tofu. Prior to the experiment, the specific heat of the cold storage materials at low temperature were measured. Through this, the thermal diffusivity of the materials was calculated, and paraffin wax had the lowest value. As a result of the TSU system's low-temperature maintenance test, paraffin wax showed the best low-temperature maintenance performance. And it recorded a low-temperature maintenance time that was about 24% longer than other materials. As a result of analyzing the temperature trend by location within the TSU system, it was observed that heat intrusion from the outside was not well transmitted to the low temperature area due to the low thermal conductivity of paraffin wax. Therefore, in the TSU system for vaccine storage, it was experimentally verified that the lower the thermal diffusivity of the cold storage material, the better low temperature maintenance performance.

Strategies for Increasing Biomass Energy Utilization in Rural Areas - Focusing on heating for greenhouse cultivation - (농촌지역 바이오매스 에너지 보급 활성화 전략 - 시설재배 난방을 중심으로 -)

  • Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.9-20
    • /
    • 2015
  • The demand of renewable energy is expected to grow in the long run in spite of current stable lower oil prices. Energy consumption for heating in horticulture greenhouse is large and affects the profits of the farms. This study analyzed the availability of biomass in rural area and proposed the strategies for utilizing the biomass for greenhouse heating. Data reveal the annual average fuel consumption in greenhouses is about 78 TOE/ha. Considering biomass resource in rural areas, agricultural residues are not sufficient to meet the biomass demand from greenhouses. Therefore it is recommended to secure further biomass including wild herbaceous biomass and woody biomass from forest. Based on the conditions of biomass gasification equipment investment and fuel prices, maximum allowable price of biomass turned out about 100,000 KRW/t to be competitive to kerosine. Biomass supply chain should be established for facilitating biomass trading between biomass consumers and biomass producers such as farmers who provide crop residues. An online trading system is an example of the system where consumers who utilize biomass make payments to suppliers and get the information about the biomass. Intermediate collection storages are required to store biomass from distributed sources. Operation of biomass heating systems in demonstration greenhouses is necessary to get information to refine and further develop commercial biomass heating systems. Relatively large greenhouses are desirable to have biomass heating systems for economic viability. The location of the greenhouse farms should be selected within the area where enough biomass resources are available for feeding the biomass facility.

MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid (재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구)

  • Park, Si Jae;Lee, Seung Hwan;Oh, Young Hoon;Lee, Sang Yup
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.

Investigating Green Marketing Orientation Practices among Green Small and Medium Enterprises

  • RAJADURAI, Jegatheesan;ZAHARI, Abdul Rahman;ESA, Elinda;BATHMANATHAN, Vathana;ISHAK, Nur Afiqah Mohammad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.407-417
    • /
    • 2021
  • This study aims to establish the relationship between the Green Marketing Orientation (GMO) variables and the performance of Green Small and Medium Enterprises (GSMEs) across the building and energy sectors in Malaysia, using customer satisfaction as a means of performance measurement. The GMO variables examined include Greening the Process (GTP), Green Supply Chain Management (GSCM), Green Strategic Policy Initiatives (GSPI), Proactive Energy Conservation (PEC) and Green Promotion (GP). The items used to measure these variables were extracted from literature and adapted to the context of the variables based on feedback from Focus Group Discussions and Expert Opinion sessions. This study employs a survey sample of 300 respondents but only 238 completed questionnaires were returned. The results reveal that GTP, GSCM and PEC have a positive impact on Customer Satisfaction but not GSPI and GP. The findings suggest that owners or managers of GSMEs should focus on maintaining and improving GTP, GSCM and PEC in order to create greater satisfaction among their customers. The significance of this study is that it enables the creation of a framework that enables GSMEs to design a pathway towards achieving a cleaner production of goods and services in line with United Nations Sustainable Development Goals.

Implementing a Power Facility Management Services using RFID/USN Technology (RFID/USN 기술을 이용한 전력설비관리 서비스 구현)

  • Kim, Young-Il;Shin, Jin-Ho;Song, Jae-Ju;Yi, Bong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.263-270
    • /
    • 2008
  • Research of ubiquitous computing becomes more popular topic along with the rapid development of wireless technologies. Firstly, research and development on RFID focuses on manufacturing and retail sectors, because it can improve supply chain efficiency. But, it changes to USN (Ubiquitous Sensor Network) by adding a sensor and wireless network technologies on it. In this research, we design and implement the electric facility management service framework to collect real time information of electric facility using RFID/USN. In electric power industry, it is important the supply of energy must be guaranteed. So many power utilities control and supervise the transmission line to avoid power failures. Utilities install many types of sensor to monitor important facilities by wired network such as optical cable and PLC. In this research, we develop the sensor node which is small, easy to install and using wired network. We design the service framework for electric facility management to collect data using RFID tag, reader and wireless sensor nodes and implement the electric facility management service.

Systematic Literature Review of Smart Trade Contract Research (스마트 무역계약 연구의 체계적 문헌고찰)

  • Ho-Hyung Lee
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.243-262
    • /
    • 2023
  • This study provides a systematic review of smart trade contracts, examining the research trends and theoretical background of utilizing smart contracts and blockchain technology for the digitalization and automation of trade contracts. Smart trade contracts are a concept that applies the automated contract system based on blockchain to trade-related transactions. The study analyzes the technical and legal challenges and proposes solutions. The technical aspect covers the development of smart contract platforms, scalability and performance improvements of blockchain networks, and security and privacy concerns. The legal aspect addresses the legal enforceability of smart contracts, automatic execution of contract conditions, and the responsibilities and obligations of contract parties. Smart trade contracts have been found to have applications in various industries such as international trade, supply chain management, finance, insurance, and energy, contributing to the ease of trade finance, efficiency of supply chains, and business model innovation. However, challenges remain in terms of legal regulations, interaction with existing legal frameworks, and technological aspects. Further research is needed, including empirical studies, business model innovation, resolution of legal issues, security and privacy considerations, standardization and collaboration, and user experience studies to address these challenges and explore additional aspects of smart trade contracts.