• Title/Summary/Keyword: Energy Separation

Search Result 1,495, Processing Time 0.027 seconds

Estimation and Application of HU Values for Various Materials as a Function of Physical Factor (물리적 인자의 변화에 따른 다양한 구성물질의 하운스필드 단위 평가 및 응용)

  • Lee, Seung-Wan;Kim, Hee-Joung;Kim, Tae-Ho;Jo, So-Jeong;Lee, Chang-Lae
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.145-151
    • /
    • 2009
  • This study aims to evaluate CT (Computed Tomography) characteristics through the estimation of HU (Hounsfield Unit) and the corresponding variations using coefficient of variation values for various materials as a function of physical factor. HU values for various materials with varying densities as a function of physical factor were measured using MDCT (Siemens SOMATOM Sensation 4, Germany). The results showed that the HU values were decreased and increased as a function of kVp and material density, respectively. Especially, the HU values for bone and iodine at 140 kVp were 32% and 42% smaller than those at 80 kVp, respectively. In case of iodine, the HU values also decreased and increased as a function of kVp and concentration, respectively. While the HU values were fixed as a function of mAs. The decreased ratio of HU values between 80 keV and 140 keV was different at various concentration and maximum difference was shown as 1.73 at 3% concentration. These results indicated that it may be possible to separate composition of materials, e.g. iodine and bone, using single source CT. The results showed that dual energy techniques using single source CT can be applied to material separation and expand CT imaging techniques to other practical applications.

  • PDF

Local surface potential and current-voltage behaviors of $Cu(In,Ga)Se_2$ thin-films with different Ga/(In+Ga) content (Ga/(In+Ga) 함량비에 따른 $Cu(In,Ga)Se_2$ 박막의 국소적 영역에서의 표면 퍼텐셜과 전류-전압 특성 연구)

  • Kim, G.Y.;Jeong, A.R.;Jo, W.;Jo, H.J.;Kim, D.H.;Sung, S.J.;Hwang, D.K.;Kang, J.K.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.149-152
    • /
    • 2012
  • $Cu(In,Ga)Se_2$ (CIGS) is one of the most promising photovoltaic materials because of large conversion efficiency which has been achieved with an optimum Ga/(In+Ga) composition in $CuIn_{1-x}Ga_xSe_2$ (X~0.3). The Ga/(In+Ga) content is important to determine band gap, solar cell performances and carrier behaviors at grain boundary (GB). Effects of Ga/(In+Ga) content on physical properties of the CIGS layers have been extensively studied. In previous research, it is reported that GB is not recombination center of CIGS thin-film solar cells. However, GB recombination and electron-hole pair behavior studies are still lacking, especially influence of with different X on CIGS thin-films. We obtained the GB surface potential, local current and I-V characteristic of different X (00.7 while X~0.3 showed higher potential than 100 mV on GBs. Higher potential on GBs appears positive band bending. It can decrease recombination loss because of carrier separation. Therefore, we suggest recombination and electron-hole behaviors at GBs depending on composition of X.

  • PDF

Catalytic decomposition of HDPE over Al-MCM-48 using TGA and Py-GC/FID (TGA와 Py-GC/FID를 이용한 Al-MCM-48상에서 HDPE의 촉매(觸媒) 열분해(熱分解))

  • Kim, Young-Min;Kim, Seung-Do;Park, Young-Kwon;Kim, Ji-Man;Jeon, Jong-Ki
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.17-25
    • /
    • 2006
  • Al-MCM-48 was used as a catalyst to decompose high density polyethylene(HDPE). Catalytic activity of Al-MCM-48 was compared with those of Al-MCM-41, Beta, and ZSM-5. Catalytic decomposition rate over Al-MCM-48 was much higher than at of non-catalytic pyrolysis only. Compared to other catalysts, Al-MCM-48 revealed the little higher activation energy value. The progressive deactivation behavior of the catalysts has also studied. ZSM-5 and Al-MCM-48 showed slower deactivation rates than Al-MCM-41 and Beta. Pyrolysis coupled with gas chromatographic separation and flame ionization detection (Py-GC/ FID) was also performed to assess the characteristics of pyrolysis products. ZSM-5 gave a higher fraction of gaseous products ($C_1-C_4$). Al-MCM-41 and Beta produced mainly $C_5-C_{12}$ products. The selectivity to oil product ($C_5-C_{22}$) obtained with Al- MCM-48 is higher an that with the other catalysts employed in this study.

Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling (플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

The Study on the Separation Characteristics of ion with ion Exchange Membrane - I.The Characteristics of ion Exchange Membrane with the Separator of All-Vanadium Redox Flow Battery - (이온교환막을 이용한 이온의 분리특성에 관한 연구 - I. 전바나듐계 레독스-흐름 전지의 격막용 이온 교환막의 특성 -)

  • Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.393-402
    • /
    • 1993
  • Redox flow secondary battery have been studied actively as one of the most promising electrochemical energy storage devices for a wide range of applications, such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants. In all-vanadium redox flow battery using solution of vanadium-sulfuric acid as a active material, the difficulty in developing an efficient ion selective membrane can still be identified. The asymmetric cation exchange membrane(M-30) as a separator of all-vanadium redox flow battery which were obtained by the reaction of chlorosulfonation for 30 minutes under the irradiation of UV, showed its superiority in the transport number of 0.94 and electrical resistivity of $0.5{\Omega}{\cdot}cm^2$. The base membrane were prepared by lamination a low density polyethlene film of $10{\mu}m$ thickness on polyolefin membrane(HIPORE 120). The electrical resistivity of M-30 membrane in real solution of vanadium-sulfuric acid was $3.79{\Omega}{\cdot}cm^2$ and it was similar to that of Nafion 117 membrane. Also the cell resistivity was $6.6{\Omega}{\cdot}cm^2$and lower than that of Nafion 117. In considertion of electrochemical properties and costs of membranes, M-30 membrane was better than that of Nafion 117 and CMV of Asahi glass Co. as a separator of all-vanadium redox flow battery.

  • PDF

An Analysis of STS Materials in Chemistry Parts of Middle School Science Textbooks (제 6차 교육과정에 따른 중학교 과학 교과서(화학단원)의 STS 내용 분석)

  • Kim, Yun Hi;Kwon, Hyo Jin;Moon, Seong Bae
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.321-327
    • /
    • 1999
  • The STS materials, emphasized in the 6th curriculum, in the chemistry part of middle school science textbooks were analyzed. The average value of the STS content of textbook was 13.2%. In the study of chapter of textbook, 15.9% of STS materials was included in the chapter of ?reaction of materials?, 12% in "character and separation of materials", and 10.8% in "composition of materials". When the STS topics classified by Piel were analyzed, the results were as follows; 40.2% on sociology of science, 28.8% on environmental quality and utilization of natural source, 20.4% on effects of technological developments, and 12.9% on energy. However, the topic on human engineering was only included in a textbook, and the topics on space research and national defence were not included in any textbooks. When the STS materials were analyzed by student activities of SATIS, the number of activities was 71. Most activities were consisted of solving problems and decision, simulation and data analysis, and there was no research design and role playing.

  • PDF

The Function or Urban River and Sustainable Regional Development : The Case of Kumho River (도시하천과 지속가능한 지역 발전 : 금호강을 중심으로)

  • Choi, Byung-Doo
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.4
    • /
    • pp.757-774
    • /
    • 2004
  • This paper is to reclassify systematically the functions of urban river: that is, water supply, land management, transportation and energy source as social and economic function; formation of geomorphic surface, water-side landscape, community constitution and boundary and separation between regions as spatial function; and drainage of waste water, purification, habitation, and weather regulation as ecological function. On the basis of this reclassification, it can be argued that the socio-economic functions (eg. water supply) of the river among the functions of the river have been strongly mobilized in the process of modernization, while the spatial function and ecological function of urban river have been ignored. The Kumho river which flows through Daegu and the adjacent area has made a great contribution to the modem development process of the river basin area, but as a result of a selective development of a specific function of the river, that is the social and economic function, it now suffers from the lack of instream flow and is deprived of its original functions with the water pollution and degradation. Moreover the Daegu region seems no longer possible to develop on the dependence of the river. In order to overcome this kind of social and environmental crisis, this paper is to suggest both some principles and main evaluating indicators to restore the original and comprehensive functions of the river, and important measures to make the co-evolution of the city and the river possible.

  • PDF

Performance Enhancement Study of a Final Clarifier by the Optimum Design of Inlet and Baffle Condition (유입구 및 정류벽 최적설계에 의한 최종 침전지 성능 개선 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Jung, Sung-Hee;Gang, Dong-Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.177-183
    • /
    • 2005
  • The effluent quality is directly affected by the separation of biological solids in a final clarifier because the majority of discharged $BOD_5$ and SS are virtually dependent on the results of biological solids in the sedimentation tank effluent. If a final clarifier is effectively designed and operated, the desired goal of clarification for wastewater can be achieved together with the cost reduction in the treatment of wastewater. To this end flow characteristics and the removal efficiency of SS are numerically investigated especially by the change of the inlet position and the installation of baffle to improve the performance of a rectangular final clarifier. The 2-D computer program developed in a rectangular coordinates has been successfully validated against experimental residence time distribution(RTD) curves obtained by tracing radio-isotope. The lowering of the inlet position weakens the density current and induces the settling of SS in the front zone of a clarifier. Thus the decreased traveling distance of the sludge increases the removal efficiency of SS in the effluent. The inlet baffle installed in the front region of clarifier prevents the short circuiting flow and induces to flow into the dense underflow, which eventually improves the effluent quality. In the case of lower inlet position, however, installation of baffle results in degradation of effluent quality. Consequently it is strongly recommended that in-depth numerical study be performed in advance for optimizing a clarifier design and retrofitting to improve effluent quality in a final clarifier.

Improved Organic Removal Efficiency in Two-phase Anaerobic Reactor with Submerged Microfiltration System (침지형 정밀여과시스템을 결합한 이상 혐기성 시스템에 의한 유기물 제거율의 향상)

  • Jung, Jin-Young;Chung, Yun-Chul;Lee, Sang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-637
    • /
    • 2000
  • A two-phase anaerobic reactor with a submerged microfiltration system was tested for its ability to produce methane energy from organic wastewater. A membrane separation system with periodic backwashing with compressed air was submerged in the acidogenic reactor. The cartridge type of microfiltration (MF) membrane with pore size of $0.5{\mu}m$ (mixed esters of cellulose) was tested. An AUBF (Anaerobic Upflow Sludge Bed Filter: 1/2 packed with plastic media) was used for the methanogenic reactor. Soluble starch was used as a substrate. The COD removal was investigated for various organic loading with synthetic wastewater of 5,000 mg starch/L. When the hydraulic retention time (HRT) of the acidogenic reactor was changed from 10 to 4.5 days, the organic loading rate (OLR) varied from 0.5 to $1.0kg\;COD/m^3-day$. When the HRT of the methanogenic reactor was changed from 2.8 to 0.5 days, the OLR varied from 0.8 to $5.8kg\;COD/m^3-day$. The acid conversion rate of the acidogenic reactor was over 80% in the 4~5 days of HRT. The overall COD removal efficiency of the methanogenic reactor showed over 95% (effluent COD was below 300 mg/L) under the highly fluctuating organic loading condition. A two-phase anaerobic reactor showed an excellent acid conversion rate from organic wastewater due to the higher biomass concentration than the conventional system. A methanogenic reactor combined with sludge bed and filter, showed an efficient COD and SS removal.

  • PDF

Effect of Flow Rates of Feed and Sweep Gas on Oxygen Permeation Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membrane (공급가스 및 스윕가스 유량에 따른 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 분리막의 산소투과특성)

  • Park, Se Hyung;Sonn, Jong Suk;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.407-411
    • /
    • 2015
  • Dense ceramic membranes have been prepared using the commercial perovsikite $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$, powders synthesized by the solid state reaction method. The as-synthesized powders were compressed into disks with 1.0 mm of thickness and the disk was sintered at $1,100^{\circ}C$ for 2 hr. The oxygen permeation flux of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane increased with the increasing temperature and oxygen partial pressure. The activation energy for oxygen permeation was increased with the increasing oxygen partial pressure. Oxygen permeation flux at $950^{\circ}C$ were measured at various flow rates of feed and sweep gas. It has been demonstrated that oxygen permeability increased at elevated flow rates of both gases, but the sweep gas is more influential.