• Title/Summary/Keyword: Energy Saving Strategy

Search Result 97, Processing Time 0.028 seconds

Environmental Conservation and Sustainable Pusan Development Strategy (환경보전과 지속가능한 부산의 도시개발방안)

  • Hwang, Young-Woo;Song, Kyo-Ook;Yhang, Wii-Joo
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.195-203
    • /
    • 1997
  • Pusan has experienced some different paths of urbanization and industrialization compared to other cities. and has faced the problem of over-saturation In enoronmental capacity. Pusan needs to fond out sustainable development strategies based on Agenda 21 by UNCED In 1992 to secure urban renewal. Therefore. Pusan's sustainable development strategies focus on the 1)research on envlronmental capacity and reasonable population accommodation 2)supp1y of basic enoronmental facilities for the human settlement 3)protection and efficient management of environmental pollution 4)saving and control of energy and other resources S)independent and stable euecution of plan based on biological relation 6)harmony between nature and urban spatial organization. In addition. these policies can be suggested along with the conclusions; First, ostablishment of green plan-muddle and long term environmental goals Included In the urban planning to reduce enoronmental deterioration and pollution. Second, computation of sustalnability Indeu the Index Is necessary to sustainable urban development, which is related with green GNP of the national level. Third, capacity estimation of nature and social environment-estimation of enoronmental capacity to the civilized area is required become an ecopolis, and is required to focus on the western area of Pusan which has high decree of potentiality.

  • PDF

The effect of eco-friendly management activities of a cosmetic company on customers' decision making (미용기업의 친환경 경영활동이 소비자 의사결정에 미치는 영향)

  • Nam-Koong, Yun;Yang, Eun-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.285-291
    • /
    • 2018
  • The purpose of this research lies in analyzing the corelation between the eco-friendly management activities of a cosmetic company and customers' decision making in terms of purchase. In this research, 355 copies of questionaire from general customers were analyzed using the statistic package program of SPSS v.18.0. Based on the research analysis, the attributes of eco-friendly management activities can be categorized into three factors such as 'energy saving', 'contribution to communities', and 'environment-oriented services' and have the statistically meaningful positive influence on the three factors of customers' decision making; 'purchasing intention', 'assessment of purchase', and 'repurchase'. This research shows that the eco-friendly management activities of a cosmetic company is an important factor for its successful marketing strategy. This research has a significance in that it has studied the eco-friendly management activities of a cosmetic company through stereotyping. We can expect successful marketing effect if a cosmetic company uses eco-friendly products, information, and services in its eco-friendly marketing.

A Robust Continuous Object Tracking Protocol Using Chained Selective Wakeup Strategy in Wireless Sensor Networks (무선 센서 네트워크에서 연결된 선택적 활성화 기법을 사용하는 강건한 연속 객체 추적 프로토콜)

  • Hong, Hyungseop;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.1
    • /
    • pp.72-79
    • /
    • 2013
  • In wireless sensor networks, the selective wakeup scheme is one of the energy saving mechanisms, that is used for an object detecting or tracking. Recently, many protocols are proposed using the selective wakeup scheme for the continuous objects tracking such as forest fires and poison gas. They predict the future shape of continuous objects and activate only sensors in the predicted boundary area of the objects. It works correctly in a uniformly deployed wireless sensor networks. However, it cannot be directly applied to a randomly deployed sensor networks with voids. When the predicted area is in the void area, the activation message cannot reach and the predicted area cannot be activated at the right time. It leads to many detection errors for continuous object. Moreover, if a sensor is once foiled in a activation control then the next activation control might be continuously failed. The detection errors can be result in serious harm to people. In this paper, we propose a chaining selective wakeup scheme for robust continuous object tracking in wireless sensor networks. In our protocol, we collect the information of a void area during the network configuration time; if the next boundary area is in the void area, we activate the chained area surrounding the void area with activation control message.

Strategy and Development of Recycling Technology for End-of-Life Vehicles(ELVs) in Germany

  • Kim, Jae-Ceung
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.16-36
    • /
    • 2005
  • The quantity of passenger cars in industrial countries has been significantly increased in recent years. According to prognoses, this tendency is likely to continue in the forthcoming future. As a direct consequence, an increase of End-of Life-Vehicles (ELV) will confront us with the problem of "ELV-Recycling". In order to cope with this situation, the European regulation for the treatment of End-of-Life-Vehicles (09/2000) has been transferred to national law in Germany (ELV-Regulation from 1 July 2002). The long term aim is to reduce residues from the ELV-treatment to less than 5 wt% from 30 wt% within the next 10 years (2015). For that reason, there is a need for innovative and more efficient recycling techniques tailored to future materials in automobiles. The design process at automotive industry is continuously changing due to the strong demand on optional equipment and new technical solutions for fuel saving. Light materials, such as aluminum and plastics, consequently become more important and cause a decrease of ferrous metals. Since plastic materials are often used as compounds, a separation into initial material types by means of mechanical recycling methods is not possible. For that reason, efficient recycling can only be realized by introducing recycling-friendly car designs. In the end an integrated approach of auto makers and recycling industry is of decisive significance for the fulfillment of future regulations.

Influences of Oceanographic Features on Spatial and Temporal Distributions of Size Spectrum of Walleye Pollock, Gadus chalcogrammus Inhabiting Middle Eastern Coast of Korea (동해 중부 연안 환경 변화에 따른 명태 개체 크기 및 분포의 시공간적 변화)

  • Jung, Hae Kun;Lee, Chung Il;Park, Hyun Je;Park, Joo Myun
    • Korean Journal of Ichthyology
    • /
    • v.32 no.3
    • /
    • pp.148-159
    • /
    • 2020
  • This study investigated the seasonal and inter-annual changes in vertical distribution and size spectrum of walleye pollock, Gadus chalcogrammus inhabiting middle eastern coast of Korea (hear after pollock). Pollock was distributed between 50 m and 600 m depth range, and body size (total length) ranged from 16.6 cm to 81.5 cm. The trends of population body size were increased in autumn and winter and decreased in spring and summer. Vertical distribution of pollock showned depth-dependent patterns with distributing smaller individuals mainly in the upper layer (shallower depth), while larger fish in deeper habitats. Those patterns in vertical distribution of pollock population is probably due to be the results of energy-saving strategy, metabolic effects, and changes in prey selections according to pollock growth, derived from spatial and temporal changes in oceanic condition in habitat grounds. When water temperature in upper layer were increased and that of below thermocline depth became decreased in 2017, the ratio of smaller (<35 cm) and larger (≥35 cm) individuals was biased toward larger fishes, extending their distribution into shallow depth, and consequently main fishing ground was formed in far from coastal area. In addition, the ratio of smaller individual distributing between 100~300 m was increased with decreasing temperature gradient between below thermocline and bottom layer. Changes in spatial and temporal distributions of pollock population likely be related with vertical and horizontal changes in oceanic conditions and, consequently food supplies.

Development and Application of a Project-based Sustainability Education Program (프로젝트 기반 지속가능성 교육 프로그램의 개발과 적용)

  • Kang, Sukjin;Kim, Jinhyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.108-121
    • /
    • 2024
  • In this study, we developed a sustainability education program employing a project-based learning strategy for prospective teachers and investigated its effectiveness. A total of 23 senior students from a university of education participated in the study. The investigation involved a pretest on their pro-environmental behavior and attitudes, followed by a five-week implementation of the program, during which students individually engaged in energy-saving projects. Following the program, a post-test, which used the same questionnaire as the pretest, was administered. In addition, we conducted individual interviews with nine students who actively engaged in the projects. We analyzed the interview contents, portfolios, and reports; identified sub-concepts related to the program's effectiveness and its causes; and then organized them into subcategories. Then, we extracted recurring relationships among the subcategories to formulate a tentative explanatory model. The results indicate that the program positively impacted students' pro-environmental behavior and values/attitudes. Notably, the students' "sense of achievement gained through success" emerged as a significant factor influencing their pro-environmental behavior. Furthermore, some causes were found to indirectly affect pro-environmental behavior through pro-environmental values and attitudes.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF