• Title/Summary/Keyword: Energy Ratio Factor

Search Result 551, Processing Time 0.022 seconds

Effect of Rib Height on Turbulence and Convective Heat Transfer (리브의 높이가 난류 및 열전달특성에 미치는 영향)

  • Nine, Md.J.;Kim, S.J.;Jeong, H.M.;Chung, H.S.;Rahman, M.Sq.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.30-37
    • /
    • 2012
  • Effect of rib heights is found as significant parameter to enhance convective heat transfer performance under laminar and low turbulent regime. Circular ribs with different ribheight to channel height ratios, e/H = 0.05, 0.1, 0.15, are fabricated over the copper substrate respectively in a rectangular duct having 7.5 cross sectional aspect ratio. Only one rib pitch to rib height ratio (P/e = 10) has been chosen for all different height ribs. The result shows that the arithmetic average of turbulence intensity decreases with decreasing roughness height calculated between two ribs under laminar and low turbulent region. It occurs because the area of recirculation and reattachment zone also decreases with decreasing rib height. Optimum thermal enhancement factor is derived by 0.1 rib height to channel height ratio under low turbulent region but 0.15 rib height to channel height ratio gives maximum subjected to laminar flow.

Outage Analysis and Optimization for Four-Phase Two-Way Transmission with Energy Harvesting Relay

  • Du, Guanyao;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3321-3341
    • /
    • 2014
  • This paper investigates the outage performance and optimization for the four-phase two-way transmission network with an energy harvesting (EH) relay. To enable the simultaneous information processing and energy harvesting at the relay, we firstly propose a power splitting-based two-way relaying protocol (PSTWR). Then, we discuss its outage performance theoretically and derive an explicit expression for the system outage probability. In order to find the optimal system configuration parameters such as the optimal power splitting ratio and the optimal transmit power redistribution factor, we formulate an outage-minimized optimization problem. As the problem is difficult to solve, we design a genetic algorithm (GA) based algorithm for it. Besides, we also investigate the effects of the power splitting ratio, the power redistribution factor at the relay, and the source to relay distance on the system outage performance. Finally, extensive simulation results are provided to demonstrate the accuracy of the analytical results and the effectiveness of the GA-based algorithm. Moreover, it is also shown that, the relay position greatly affects the system performance, where relatively worse outage performance is achieved when the EH relay is placed in the middle of the two sources.

Analysis of the Part Load Ratio Characteristics and Gas Energy Consumption of a Hot Water Boiler in a Residential Building under Korean Climatic Conditions (국내 기상조건하 주거용 건물 가스 보일러의 부분부하 특성과 에너지 사용량 분석)

  • Yu, Byeong Ho;Seo, Byeong-Mo;Moon, Jin-Woo;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.455-462
    • /
    • 2015
  • Residential buildings account for a significant portion of the total building-energy usage in Korea, and a variety of research studies on the domestic boiler have therefore been carried out; however, most of these studies examined the boiler itself, whereby the part-load ratio characteristics and the corresponding gas-energy consumption patterns were not analyzed. In this study, the part-load ratio and operating characteristics of a domestic gas boiler were analyzed within a residential building equipped with a radiant floor-heating system; in addition, the energy consumption between condensing and conventional boilers was comparatively analyzed. Our results show that significant portions of the total operating hours, heating load, and energy consumption are in the part-load ratio range of 0 through 40%, whereby the energy consumption was significantly affected by the boiler efficiency under low part-load conditions. These results indicate that the part-load operation of a boiler is an important factor in residential buildings; furthermore, replacing a conventional boiler with a condensing boiler can reduce annual gas-energy usage by more than 20%.

Sensorless MPPT Control using a Boost Converter and a Grid Side Inverter in Wind Power Generation Systems (Boost 컨버터와 계통연계 인버터를 이용한 풍력발전의 센서리스 MPPT 제어)

  • Kim, Do-Yoon;Lee, Jun-Min;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1372-1377
    • /
    • 2011
  • This paper proposes the control method of MPPT(maximum power point tracking) for the wind energy generation system using the duty ratio control of boost type DC-DC converter. For a lower cost and a higher reliability, the wind and the generator velocity sensors are removed. MPPT control is implemented by changing the duty ratio of the boost converter. Chain rule is applied by using each function. The grid side inverter is controlled to regulate unity power factor. The proposed control method was analyzed mathematically and verified by the computer simulation using PSIM.

Characteristics of Fracture Energy on Steel Fiber-Reinforced Lightweight Polymer Concrete

  • Youn, Joon-No;Sung, Chan-Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.11-19
    • /
    • 2003
  • In this study, unsaturated polyester resin, artificial lightweight coarse aggregate, artificial lightweight fine aggregate, heavy calcium carbonate and steel fiber were used to produce a steel fiber-reinforced lightweight polymer concrete with which mechanical properties were examined. Results of this experimental study showed that the flexural strength of unnotched steel fiber-reinforced lightweight polymer concrete increased from 8.61 to 13.96 MPa when mixing ratio of fiber content increased from 0 to 1.5%. Stress intensity factors($K_{IC}$) increased with increasing fiber content ratio while it did not increase with increasing notch ratio. Energy release rate ($G_{IC}$) turned out to depend upon the notch size, and it increased with increasing steel fiber content.

NOx Reduction Characteristics of Air Staging Burner for Pulverized-coal Combustion (공기 다단공급식 미분탄 버너의 NOx 저감 특성)

  • Park, Chu-Sik;Kim, Sung-Won;Choi, Snag-Il
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.153-160
    • /
    • 2001
  • The combustion test used DTF was performed to obtain the characteristics of NOx emission and reduction. In this test, major factor of NOx emission was a stoichiometric air ratio. At the onset of combustion to be rich oxygen, NOx was produced rapidly. Optimum condition for NOx reduction was formed under about AR:0.7 in the combustion test of Alaska coal. Investigations were undertaken with 200KW(th) test combustor. In combustion test, the major variables were coal feed ratio of center/outer, stoichiometric air ratio at the onset of combustion. The lowest NOx emission, 182ppm(6% O2 base), was achieved at about AR:0.6 of the first combustion stage with low NOx burner. Also, unburned carbon content of char collected in this combustion condition was about 1wt%.

  • PDF

Distortion and Dilatatioin in the Tensie Failure of Paper

  • Park, Jong-Moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.73-85
    • /
    • 1999
  • Yield and fracture are separated in the tensile failure of paper. Failure in the machine direction of photocopy paper is contrasted with failure in the cross-machine direction . The ratios of distortion (shape change) to dilatation (volume change) for individual elements at yield and fracture are described. The ratios of distortion to dilatation are measured and compared to predicted values of the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density factor, samples are prepared from machine direction to cross-machine direction in 15 degree intervals. the strain energy density of individual elements are obtained by the integration of stress from finite element analysis with elastic plus plastic strain energy density theory. Poison's ratio and the angle from the principal material direction have a great effect ion the ratio fo distortion to dilatation in paper. During the yield condition, distortion prevails over dilatation . At fracture, dilatation is at a maximum.

  • PDF

Experimental Study on the Cooling seasonal Performance Factor of Room Air-conditioner (에어컨의 냉방기간 에너지 효율 산출을 위한 실험적 연구)

  • Lee, H.W.;Moon, J.H.;Bae, Y.D.;Park, J.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.204-216
    • /
    • 1992
  • In most cases, EER(Energy Efficiency Ratio) is available to present energy efficiency of air-conditioners. But, EER is not adapt to measure energy efficiency at actual life environment because it is based on fixed temperature and humidity contditions. To overcome this disadvantage, there is need to introduce SEER(Seasonal Energy Efficiency Ratio) established at time varient temperature and humidity conditions. In this paper, SEER measurement method and conditions based on actual life environment of the country is introduced, and discussed SEER value about two air-conditioner type, that is, non inverter air-conditioner and inverter air-conditioner. As a result of, inverter air-conditioner was superior to non inverter air-conditioner at cooling seasonal energy efficiency.

  • PDF

Validation of a Model for Estimating Individual External Dose Based on Ambient Dose Equivalent and Life Patterns

  • Sato, Rina;Yoshimura, Kazuya;Sanada, Yukihisa;Sato, Tetsuro
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.77-85
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, a model was developed to estimate the external exposure doses for residents who were expected to return to their homes after evacuation orders were lifted. However, the model's accuracy and uncertainties in parameters used to estimate external doses have not been evaluated. Materials and Methods: The model estimates effective doses based on the integrated ambient dose equivalent (H*(10)) and life patterns, considering a dose reduction factor to estimate the indoor H*(10) and a conversion factor from H*(10) to the effective dose. Because personal dose equivalent (Hp(10)) has been reported to agree well with the effective dose after the FDNPS accident, this study validates the model's accuracy by comparing the estimated effective doses with Hp(10). The Hp(10) and life pattern data were collected for 36 adult participants who lived or worked near the FDNPS in 2019. Results and Discussion: The estimated effective doses correlated significantly with Hp(10); however, the estimated effective doses were lower than Hp(10) for indoor sites. A comparison with the measured indoor H*(10) showed that the estimated indoor H*(10) was not underestimated. However, the Hp(10) to H*(10) ratio indoors, which corresponds to the practical conversion factor from H*(10) to the effective dose, was significantly larger than the same ratio outdoors, meaning that the conversion factor of 0.6 is not appropriate for indoors due to the changes in irradiation geometry and gamma spectra. This could have led to a lower effective dose than Hp(10). Conclusion: The estimated effective doses correlated significantly with Hp(10), demonstrating the model's applicability for effective dose estimation. However, the lower value of the effective dose indoors could be because the conversion factor did not reflect the actual environment.