• Title/Summary/Keyword: Energy Performance verification

Search Result 294, Processing Time 0.024 seconds

A Survey on the M&V to guarantee the energy saving performance of ESCO (ESCO 에너지절약 성과보증의 M&V 적용사례 분석)

  • Lim, Ki Choo
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.199-206
    • /
    • 2014
  • ESCO industry should guarantee the energy saving performance in response to changes of regulations ESCO. In this point, the application of the M&V is important task on energy saving performance. Therefore, we need to examine the contents of practice for the M&V in developed countries. Between energy user and ESCO, it is important to provide and measure the energy saving performance by guarantee of energy savings performance contracts. After 2013 ESCO business began focusing on guaranteed savings contracts. For this reason, we need to take M&V cases recommended from IPMVP and applied in United States and Japan. Therefore, we should be ready about M&V application for the real conditions of ESCO.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Study on Development of Subroutine based on TRNSYS for Unglazed Transpired Air Collector System (TRNSYS 기반 무창기공형 공기식 집열 시스템 부프로그램 개발에 관한 연구)

  • Park, J.U.;Lee, E.J.;Chung, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.81-90
    • /
    • 2003
  • UTAC(unglazed transpired air collector) system has unique advantage for space heating and tempering ventilation air over the conventional collector system such as flat plate and vacuum collector. UTAC can improve radiative and convective loss due to nonglazed component and enhanced plate surface configuration. and heating energy and its equivalent green house emission performance can be improved from the use of this like collector in building application. The Option D Calibration simulation approach of IPMVP(International Performance Measurement and Verification Protocol) in ESCO businesses has been recommended to use of the calibrated computer modules like these Energy-10. DOE2.1E and TRNSYS(transient system simulation). This study is to develop subroutine type-203 of TRNSYS15.2 program and appraise thermal performance of UTAC. With newely addeded subroutine type-203. 1) Thermal performance of unglazed transpired collector could be possible based on dimensionless variables such as efficiency and heat exchanger effectiveness. and 2) Assessement of energy consists of solar useful and insulation saving for UTAC could be possible.

Verification Experiment and Calculation of Cooling Load for a Test Space (시험공간에 대한 냉방부하 실증실험 및 계산)

  • 유호선;현석균;김용식;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.641-651
    • /
    • 2003
  • In order to assess the reliability of a building energy simulation program (TRNSYS) from the standpoint of user, a set of verification experiment and calculation of cooling load for a test space is carried out. This work is a complement of the previous study that dealt with heating load for the same space. The test space is kept airtight to eliminate the source of uncertainties in modeling. A window-mounted, on/off controlled air-conditioner is used for cooling, whose performance has been established a priori. The calculation encompasses two models for evaluating cooling load in TRNSYS: energy rate control and temperature level control. Comparison of the total cooling loads obtained from different sets of experimental data enables to validate the measurements. The experimental result shows that the latent load is fairly large even in the absence of apparent air change in the space, which needs to be clarified. Each of hourly and daily accumulated sensible loads is compared between the experiment and two calculation models. Despite an inconsistency associated with solar irradiation, both of the models agree favorably with the experiment within a tolerance, illustrating their capability of properly predicting space thermal loads.

A study on the Insulation Performance of the SuperWindow considering the Evaluation of Building Energy Rating (건물에너지효율등급 적용에 따른 초단열 슈퍼윈도우 열성능 평가)

  • Jang, Cheol-Yong;Kim, Chi-Hoon;Ahn, Byung-Lip;Hong, Won-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Generally, the building's windows and ventilation for the purpose of mining and the vista and windows by emotional engineering design area is a growing trend.In addition, the building regulation U-value limitation of window is $3.3W/m^2{\cdot}K$ in southern regions, while U-value limitation of wall is $0.35{\sim}0.58W/m^2{\cdot}K$. It means that the energy loss through windows is six times more than it through wall. Therefore, the purpose of this study is to evaluate the environmental performance of the super window system by verification experiment. The results of this study are as follows; 1) The insulation performance of super window system is $1.44\;W/m^2^{\circ}C$ 2) Super Window compared to a normal window reduce heating energy requirements have been 5.3% 3) Compared to a normal window, Super window savings rate was 4.1% lower 4) Building energy efficiency rating was up to 1 rating from 2 rating.

Power Performance Testing and Uncertainty Analysis for a 1.5MW Wind turbine (1.5MW 풍력발전시스템 출력 성능시험 및 불확도 분석)

  • Kim, Keon-Hoon;Ju, Young-Chul;Kim, Dae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.63-71
    • /
    • 2006
  • The installed capacity of wind turbines in KOREA are growing and enlarging by the central government's support program. Thus, the importance of power performance verification and its uncertainty analysis are recognizing rapidly. This paper described the Power testing results of a 1.5MW wind turbine and analysed an uncertainty level of measurements. The measured power curves are very closely coincide with the calculated one and the annual power production under the given Rayleigh wind speed distribution are estimated with the $4.7{\sim}22.0%$ of uncertainty but, in the dominant wind speed region as $7{\sim}8m/s$, the uncertainty are stably decreased to $7{\sim}8%$.

Power Performance Testing and Uncertainty Analysis for a 3MW Wind Turbine (3MW 풍력발전시스템 출력 성능시험 및 불확도 분석)

  • Kim, Keon-Hoon;Hyun, Seung-Gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.10-15
    • /
    • 2010
  • The installed capacity of wind turbines in KOREA are growing and enlarging by the central government's support program. Thus, the importance of power performance verification and its uncertainty analysis are recognizing rapidly. This paper described the power testing results of a 3MW wind turbine and analysed an uncertainty level of measurements. The measured power curves are very closely coincide with the calculated one and the annual power production under the given Rayleigh wind speed distribution are estimated with the 3.6~12.7% of uncertainty but, in the dominant wind speed region as 7~8m/s, the uncertainty are stably decreased to 6.3~5.3%.

The applicability study and validation of TULIP code for full energy range spectrum

  • Wenjie Chen;Xianan Du;Rong Wang;Youqi Zheng;Yongping Wang;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4518-4526
    • /
    • 2023
  • NECP-SARAX is a neutronics analysis code system for advanced reactor developed by Nuclear Engineering Computational Physics Laboratory of Xi'an Jiaotong University. In past few years, improvements have been implemented in TULIP code which is the cross-section generation module of NECP-SARAX, including the treatment of resonance interface, considering the self-shielding effect in non-resonance energy range, hyperfine group method and nuclear library with thermal scattering law. Previous studies show that NECP-SARAX has high performance in both fast and thermal spectrum system analysis. The accuracy of TULIP code in fast and thermal spectrum system analysis is demonstrated preliminarily. However, a systematic verification and validation is still necessary. In order to validate the applicability of TULIP code for full energy range, 147 fast spectrum critical experiment benchmarks and 170 thermal spectrum critical experiment benchmarks were selected from ICSBEP and used for analysis. The keff bias between TULIP code and reference value is less than 300 pcm for all fast spectrum benchmarks. And that bias keeps within 200 pcm for thermal spectrum benchmarks with neutron-moderating materials such as polyethylene, beryllium oxide, etc. The numerical results indicate that TULIP code has good performance for the analysis of fast and thermal spectrum system.

Characteristic Analysis and Implementation of 30kW Portable Test Equipment for Performance Evaluation in Energy Storage System (30kW급 ESS용 이동형 성능평가 시험장치의 구현 및 특성분석)

  • Park, Jea-Bum;Kim, Mi-Sung;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.715-723
    • /
    • 2018
  • The energy storage system consists of batteries, power conditioning system and energy management system. If ESS is installed and operated in the field, SAT(Site Acceptance Test) of ESS is being essentially required for the safety and performance of ESS. Furthermore, in order to more accurately and reliably validate the performance of the ESS in advanced countries, it has been required to perform not only performance testing by H/W equipments but also performance verification by S/W tool. Therefore, this paper proposes the modeling of portable test equipment in order to evaluate the performance and reliability of ESS by using the PSCAD/EMTDC S/W. And also, the prototype of 30[kW] scaled portable test equipments is implemented based on the S/W modeling. From the results of various simulations and testings such as power quality, LVRT and anti-islanding tests, it is confirmed that 30[kW] scaled portable test equipment is useful for SAT of ESS, because the simulation results of PSCAD/EMTDC are identical to them of 30[kW] test equipment at the same test conditions.

Optimal distribution of metallic energy dissipation devices in multi-story buildings via local search heuristics

  • Zongjing, Li;Ganping, Shu;Zhen, Huang;Jing, Cao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.419-430
    • /
    • 2022
  • The metallic energy dissipation device (EDD) has been widely accepted as a useful tool for passive control of buildings against earthquakes. The distribution of metallic EDDs in a multi-story building may have significant influence on its seismic performance, which can be greatly enhanced if the distribution scheme is properly designed. This paper addresses the optimal distribution problem in the aim of achieving a desired level of performance using the minimum number of metallic EDDs. Five local search heuristic algorithms are proposed to solve the problem. Four base structures are presented as numerical examples to verify the proposed algorithms. It is indicated that the performance of different algorithms may vary when applied in different situations. Based on the results of the numerical verification, the recommended guidelines are finally proposed for choosing the appropriate algorithm in different occasions.