• 제목/요약/키워드: Energy Optimizing Control

검색결과 58건 처리시간 0.029초

FEM.SEA기법을 이용한 흡.차음재의 음향 변수의 차량실내음압에 미치는 영향에 관한 연구 (Study on the Estimation of Acoustic Behavior of the Automobile Interior Materials Using FEM and SEA)

  • 김관주;이근호;김현준;이원구
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.378-385
    • /
    • 2009
  • In establishing silent environment such as automobile and industrial instrument, the roles of the insulating materials are critical. The proper and effective positioning of insulating materials is essential in the field of noise as well as in designing silent automobile. In this paper, we proposed the systematic and efficient scheme for optimizing complete automotive interiors for noise control. In order to attain this purpose, following analysis has been carried out: First, measuring the Biot parameters of insulating materials and the transmission loss with reflecting the appropriate arrangement of insulating materials has been experimented. In addition, we made comparison among transmission loss by the tools of analysis and verification, experimental value under consideration of various situations of automobile and analysis by the SEA.

하이브리드 차량의 엔진 및 배터리 냉각팬 구동용 BLDC모터 개발 (Development of BLDC Motor for HEV Engine Cooling and Battery Cooling System)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제23권2호
    • /
    • pp.153-160
    • /
    • 2015
  • Hybrid Electric Vehicles(HEVs) have seriously come into prevalence recently as car manufacturers and consumers have become more aware of the environmental and economic problems of conventional vehicles. For the alternative power-train and battery cooling systems in HEVs, an effective thermal management system is required, and many automakers are interested in using Brushless DC(BLDC) motors for cooling fans for the overall traction unit's performance and energy saving capability. This paper presents the development status of BLDC motors as major parts of the power-train, i.e. the engine cooling and battery cooling fans of HEVs. A design that uses BLDC motors for the power-train and each battery cooling fan, is successfully implemented through using electro-magnetic analysis, and prototype BLDC motors are examined. As experimental results, the BLDC motors achieved an efficiency of 85% as engine cooling fans and 72% as a battery thermal management fan motor. The electric cogging noise is significantly reduced by changing the skew of the slot pitch angle and optimizing the magnetic shape.

The New Generation of Hydraulic Presses-Progress in the Forming Process

  • Prommer, Eric
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1276-1277
    • /
    • 2006
  • The ever increasing requirements on today's compacts with regard to their geometry and precision call for flexible high-precision and most capable production systems. DORST Technologies has coped with these requirements by developing the new HP series for pressing forces between 1600 kN and 16000 kN and the new HS series for pressing forces between 150 kN and 1200 kN. These fully hydraulic presses featuring upper ram, lower ram, core rod, filler, up to 4 lower tool levels and up to 4 upper tool levels with closed-loop controlled movements. Thanks to latest servo technology and an electronic bus system it is possible to have all movements closed-loop controlled in the desired relation to each other. Thus, today's hydraulic presses provide high stroke rates, low energy consumption and a user-friendly interface. The input of data is carried out via clearly arranged screen masks on a touch-screen. The innovative DORST $IPG^{(R)}$ (Intelligent Program Generator) has been designed to support the set-up staff in preparing and optimizing the toolprogram. The combination of the machine type with the hydraulic unit determines the productivity in consideration of the specific application and the part to be pressed. Thanks to the closed-loop control circuits, DORST hydraulic automatic presses of the latest generation ensure unmatched precision and repeatability - and consequently process reliability - often without necessitating subsequent machining steps.

  • PDF

Interference-Limited Dynamic Resource Management for an Integrated Satellite/Terrestrial System

  • Park, Unhee;Kim, Hee Wook;Oh, Dae Sub;Ku, Bon-Jun
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.519-527
    • /
    • 2014
  • An integrated multi-beam satellite and multi-cell terrestrial system is an attractive means for highly efficient communication due to the fact that the two components (satellite and terrestrial) make the most of each other's resources. In this paper, a terrestrial component reuses a satellite's resources under the control of the satellite's network management system. This allows the resource allocation for the satellite and terrestrial components to be coordinated to optimize spectral efficiency and increase overall system capacity. In such a system, the satellite resources reused in the terrestrial component may bring about severe interference, which is one of the main factors affecting system capacity. Under this consideration, the objective of this paper is to achieve an optimized resource allocation in both components in such a way as to minimize any resulting inter-component interference. The objective of the proposed scheme is to mitigate this inter-component interference by optimizing the total transmission power - the result of which can lead to an increase in capacity. The simulation results in this paper illustrate that the proposed scheme affords a more energy-efficient system to be implemented, compared to a conventional power management scheme, by allocating the bandwidth uniformly regardless of the amount of interference or traffic demand.

태양광패널 온도제어를 위한 PCM시스템 최적화에 관한 실험적 연구 (Experimental study for optimizing the thermal regulating system with phase change material on the photovoltaic panel)

  • 이효진;전종한
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.273-278
    • /
    • 2009
  • The experimental study is performed to investigate the optimum design of the system dissipating properly heat from the in-situ solar panel installed on site. For this purpose, six 12-Watts panels, which are set at the different conditions of the solar panels contained phase change material, changing the array of the aluminum fin and honeycomb at the back of the panel, are tested. PCM, which has $44^{\circ}C$ melting point, is chosen in this study. In order to enhance the thermal heat from the absorbed heat in PCM, finned aluminum plate is placed. Furthermore, Aluminum honeycomb is imbedded in the back container to find if it would improve the thermal conductivity of PCM. As a result, the solar panel, which is combined with honeycomb and outward fins with PCM instead of placing the fine inward, is showing the best performance in terms of controling panel temperature and efficiency.

  • PDF

금속 3D 프린팅 적층제조(AM) 공정 시뮬레이션 기술에 관한 고찰(I) (Investigation to Metal 3D Printing Additive Manufacturing (AM) Process Simulation Technology (I))

  • 김용석;최성웅;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.42-50
    • /
    • 2019
  • 3D printing AM processes have advantages in complex shapes, customized fabrication and prototype development stage. However, due to various parameters based on both the machine and the material, the AM process can produce finished output after several trials and errors in the initial stage. As such, minimizing or optimizing negative factors for various parameters of the 3D printing AM process could be a solution to reduce the trial-and-error failures in the early stages of such an AM process. In addition, this can be largely solved through software simulation in the preprocessing process of 3D printing AM process. Therefore, the objective of this study was to investigate a simulation technology for the AM software, especially Ansys Inc. The metal 3D printing AM process, the AM process simulation software, and the AM process simulation processor were examined. Through this study, it will be helpful to understand 3D printing AM process and AM process simulation processor.

Investigation of Hetero - Material - Gate in CNTFETs for Ultra Low Power Circuits

  • Wang, Wei;Xu, Min;Liu, Jichao;Li, Na;Zhang, Ting;Jiang, Sitao;Zhang, Lu;Wang, Huan;Gao, Jian
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권1호
    • /
    • pp.131-144
    • /
    • 2015
  • An extensive investigation of the influence of gate engineering on the CNTFET switching, high frequency and circuit level performance has been carried out. At device level, the effects of gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. It is revealed that hetero - material - gate CNTFET(HMG - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, and is more suitable for use in low power and high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the performance parameters of circuits have been calculated and the optimum combinations of ${\Phi}_{M1}/{\Phi}_{M2}/{\Phi}_{M3}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product(PDP). We show that, compared to a traditional CNTFET - based circuit, the one based on HMG - CNTFET has a significantly better performance (SNM, energy, PDP). In addition, results also illustrate that HMG - CNTFET circuits have a consistent trend in delay, power, and PDP with respect to the transistor size, indicating that gate engineering of CNTFETs is a promising technology. Our results may be useful for designing and optimizing CNTFET devices and circuits.

Maximizing biogas production by pretreatment and by optimizing the mixture ratio of co-digestion with organic wastes

  • Lee, Beom;Park, Jun-Gyu;Shin, Won-Beom;Kim, Beom-Soo;Byun, Byoung-su;Jun, Hang-Bae
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.662-669
    • /
    • 2019
  • Anaerobic digestion is a popular sewage sludge (Ss) treatment method as it provides significant pollution control and energy recovery. However, the low C/N ratio and poor biodegradability of Ss necessitate pretreatment methods that improve solubilization under anaerobic conditions in addition to anaerobic co-digestion with other substrates to improve the process efficiency. In this study, three pretreatment methods, namely microwave irradiation, ultrasonication, and heat treatment, were investigated, and the corresponding improvement in methane production was assessed. Additionally, the simplex centroid design method was utilized to determine the optimum mixture ratio of food waste (Fw), livestock manure (Lm), and Ss for maximum methane yield. Microwave irradiation at 700 W for 6 min yielded the highest biodegradability (62.0%), solubilization efficiency (59.7%), and methane production (329 mL/g VS). The optimum mixture ratio following pretreatment was 61.3% pretreated Ss, 28.6% Fw, and 10.1% Lm. The optimum mixture ratio without pretreatment was 33.6% un-pretreated Ss, 46.0% Fw, and 20.4% Lm. These results indicate that the choice of pretreatment method plays an important role in efficient anaerobic digestion and can be applied in operational plants to enhance methane production. Co-digestion of Ss with Fw and Lm was also beneficial.

Grain 크기 조절을 통한 n-Type Bi2Te3 열전 소재 특성 향상 (Enhanced Thermoelectric Properties in n-Type Bi2Te3 using Control of Grain Size)

  • 이나영;예성욱;;탁장렬;조중영;서원선;신원호;남우현;노종욱
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.91-96
    • /
    • 2021
  • 본 연구에서는 체가름과 고에너지 볼 밀링 공정이 n-type Bi2Te3 열전 재료의 전기적 및 열적 수송 특성에 미치는 영향을 검토하였다. 입자 크기가 감소한 분말의 특성을 유지하기 위하여 짧은 시간 안에 소결이 가능한 방전 플라즈마 소결 공정 (spark plasma sintering, SPS)을 진행하였다. 그 결과, 밀링 처리를 진행한 소결체의 열전 성능지수가 향상되었으며, 30분동안 고에너지 볼 밀링 공정을 거친 샘플이 425 K에서 0.78의 최대 열전 성능지수를 가지는 것을 확인하였다. 이는 손쉬운 공정을 이용하여 결정립 크기 감소를 통한 phonon의 격자 산란을 효과적으로 유도한 결과이다. 동시에 n-type Bi2Te3에서 anti-site defect와 같은 결함을 제어함으로써 캐리어 농도를 증가시킬 수 있음을 본 연구를 통하여 확인하였다.

Efficient Virtual Machine Resource Management for Media Cloud Computing

  • Hassan, Mohammad Mehedi;Song, Biao;Almogren, Ahmad;Hossain, M. Shamim;Alamri, Atif;Alnuem, Mohammed;Monowar, Muhammad Mostafa;Hossain, M. Anwar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1567-1587
    • /
    • 2014
  • Virtual Machine (VM) resource management is crucial to satisfy the Quality of Service (QoS) demands of various multimedia services in a media cloud platform. To this end, this paper presents a VM resource allocation model that dynamically and optimally utilizes VM resources to satisfy QoS requirements of media-rich cloud services or applications. It additionally maintains high system utilization by avoiding the over-provisioning of VM resources to services or applications. The objective is to 1) minimize the number of physical machines for cost reduction and energy saving; 2) control the processing delay of media services to improve response time; and 3) achieve load balancing or overall utilization of physical resources. The proposed VM allocation is mapped into the multidimensional bin-packing problem, which is NP-complete. To solve this problem, we have designed a Mixed Integer Linear Programming (MILP) model, as well as heuristics for quantitatively optimizing the VM allocation. The simulation results show that our scheme outperforms the existing VM allocation schemes in a media cloud environment, in terms of cost reduction, response time reduction and QoS guarantee.