• Title/Summary/Keyword: Energy Function Method

Search Result 1,559, Processing Time 0.046 seconds

Optimal Graph Partitioning by Boltzmann Machine (Boltzmann Machine을 이용한 그래프의 최적분할)

  • Lee, Jong-Hee;Kim, Jin-Ho;Park, Heung-Moon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.1025-1032
    • /
    • 1990
  • We proposed a neural network energy function for the optimal graph partitioning and its optimization method using Boltzmann Machine. We composed a Boltzmann Machine with the proposed neural network energy function, and the simulation results show that we can obtain an optimal solution with the energy function parameters of A=50, B=5, c=14 and D=10, at the Boltzmann Machine parameters of To=80 and \ulcorner0.07 for a 6-node 3-partition problem. As a result, the proposed energy function and optimization parameters are proved to be feasible for the optimal graph partitioning.

  • PDF

Region-based Vessel Segmentation Using Level Set Framework

  • Yu Gang;Lin Pan;Li Peng;Bian Zhengzhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.660-667
    • /
    • 2006
  • This paper presents a novel region-based snake method for vessel segmentation. According to geometric shape analysis of the vessel structure with different scale, an efficient statistical estimation of vessel branches is introduced into the energy objective function, which applies not only the vessel intensity information, but also geometric information of line-like structure in the image. The defined energy function is minimized using the gradient descent method and a new region-based speed function is obtained, which is more accurate to the vessel structure and not sensitive to the initial condition. The narrow band algorithm in the level set framework implements the proposed method, the solution of which is steady. The segmentation experiments are shown on several images. Compared with other geometric active contour models, the proposed method is more efficient and robust.

Efficient Energy Detection Method in Poor Radio Environment for Cognitive Radio System (Cognitive Radio 시스템을 위한 열악한 통신 환경에서 효과적인 에너지 검출방법)

  • Hyun, Young-Ju;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.7
    • /
    • pp.60-67
    • /
    • 2007
  • The spectrum sensing is important for decision of using frequency band. It checks the frequency band for cognitive radio system. In this paper, we apply autocorrelation function to the energy detection method. We use the autocorrelation function to improve the performance of spectrum sensing method based on the energy detection method. This method is different from cyclostationary process method where parameters such as the mean or the autocorrelation function are time-varying periodically. And we propose improved method that is robust in poor radio environment. If the proposed method applies for sensing in the cognitive radio system, it will have the structural simplicity and the fast computation of spectrum sensing.

Improvement of Transient Stability Energy Margin by using UPFC (UPFC를 이용한 과도안정도 에너지마진 향상)

  • Lee, Sung-Gul;Kim, Soo-Nam;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.152-154
    • /
    • 2001
  • This paper presents a method for determination of UPFC control quantity in order to enhance the power system transient stability energy margin using Genetic Algorithms in multi-machine system. We use the minimization of energy margin as the object function in GA. To set critical energy, we use the potential energy boundary surface(PEBS) method. PEBS is one of the transient energy function(TEF) method. And we used the series voltage compensator as the UPFC model. The proposed method is applied to 6-bus, 7-line, 4-machine model system to show its effectiveness.

  • PDF

Radial Basis Function Neural Network for Power System Transient Energy Margin Estimation

  • Karami, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.468-475
    • /
    • 2008
  • This paper presents a method for estimating the transient stability status of the power system using radial basis function(RBF) neural network with a fast hybrid training approach. A normalized transient energy margin(${\Delta}V_n$) has been obtained by the potential energy boundary surface(PEBS) method along with a time-domain simulation technique, and is used as an output of the RBF neural network. The RBF neural network is then trained to map the operating conditions of the power system to the ${\Delta}V_n$, which provides a measure of the transient stability of the power system. The proposed approach has been successfully applied to the 10-machine 39-bus New England test system, and the results are given.

Heart Extraction and Division between Left and Right Heart from Cardiac CTA

  • Kang, Ho Chul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.19-24
    • /
    • 2017
  • In this paper, we propose an automatic segmentation method of left and right heart in computed tomography angiography (CTA) using separating energy function. First, we smooth the images by applying anisotropic diffusion filter to remove noise. Then, the volume of interest (VOI) is detected by using k-means clustering. Finally, we extract the left and right heart with separating energy function which we proposed to split the heart. We tested our method in ten CT images and they were obtained from a different patient. For the evaluation of the computational performance of the proposed method, we measured the total processing time. The average of total processing time, from first step to third step, was $14.39{\pm}1.17s$. We expect for our method to be used in cardiac diagnosis for cardiologist.

Permeable Breakwaters Analysis by Using Boundary Element Method (경계요색법(境界要索法)에 의한 투과잠제(透過潛堤)의 해석기법(解析技法))

  • Kim, Nam Hyeong;Takikawa, Kiyoshi;Choi, Han Kuv
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.69-72
    • /
    • 1990
  • In this paper the numerical method for the study of wave reflection from and transmission through submerged permeable breakwaters using the boundary element method is developed. The numerical analysis technique is based on the wave pressure function instead of velocity potential because it is difficult to define the velocity potential in the each region arising the energy dissipation. Also, the non-linear energy dissipation within the submerged porous structure is simulated by introducing the linear dissipation coefficient and the tag mass coefficient equivalent to the non-linear energy dissipation. For the validity of this analysis technique, the numerical results obtained by the present boundary element method are compared with those obtained by the other computation method. Good agreements are obtained and so the validity of the present numerical analysis technique is proved.

  • PDF

A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

A Communication Method Between Distributed Control System and Function Test Facility Using TCP/IP and Shared Memory

  • Kim, Jung-Soo;Jung, Chul-Hwan;Kim, Jung-Taek;Lee, Dong-Young;Ham, Chang-Sik
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.298-307
    • /
    • 1998
  • In order to design mutual communication between a distributed control system and a function test facility, we used the Inter-Process Communication(IPC) in two systems and Transmission Control Protocol/Internet Protocol(TCP/IP) protocol. The data from the function test facility are put in the shared memory using an IPC, which is then accessed by the distributed control system through an Application Program Interface(API). The server in the function test facility includes two processes(one for sending and one for receiving), which are generated by the fork function from the client signal. The client in the distributed control system includes two separate programs(one for receiving and one for sending).

  • PDF

A Nonlinear Analytic Function Expansion Nodal Method for Transient Calculations

  • Joo, Han-Gyu;Park, Sang-Yoon;Cho, Byung-Oh;Zee, Sung-Quun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.79-86
    • /
    • 1998
  • The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized. In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of applications to the NEACRP PWR rod ejection benchmark problem.

  • PDF