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Abstract

The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-
dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the
homogeneous solution to the transient fixed source problem, the derivation of the solution method is Sfocused on
finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is
approximated by quadratic polynomials and the transient source is constructed such that the error due to the
quadratic approximation is minimized. In addition, this paper presents a new two-node solution scheme that is
derived by imposing the constraint of current continuity at the interface corner points. The method is verified

through a series of applications to the NEACRP PWR rod ejection benchmark problems.
I. Introduction

It has been well verified that the Analytic Function Expansion Nodal (AFEN)' method provides superior
accuracy in the eigenvalue calculations for steady reactor states. The superior accuracy of the AFEN method
originates from the explicit representation of the two-dimensional, intranodal neutron flux distribution during the
course of solving the nodal neutron balance equation. It is distinguished from the transverse-integrated nodal
methods that employ only one-dimensional flux representation in each direction. Recently, the nonlinear
iteration technique was applied to the AFEN method to provide an alternative acceleration scheme.? The
application of the nonlinear AFEN method, however, was limited to the steady-state eigenvalue problems. Since
one of the primary benefits of the nonlinear iteration technique could lie in the possibility of infrequent nodal
calculations during a transient calculation, which can save the transient calculation time significantly, there is a
strong motivation for developing a nonlinear AFEN method for transient calculations.

In the transient calculation, the problem to be solved is a fixed source problem that is formulated by the
temporal discretization of the time derivative term appearing in the time-dependent neutron diffusion equation.
The presence of the independent source poses a new problem in the AFEN solution process, which is not
encountered during the solution of eigenvalue problems. That is the need for finding the particular solution for

the source distribution formed at each time point depending on the intranodal flux distribution at the previous
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time point. In principle, the true particular solution corresponding to this source becomes trigonometric and/or
hyperbolic functions. Obtaining the analytic solution containing the true particular solution would be very
complicated and makes the solution process inefficient. In the work here, tﬁe source distribution is
approximated be simple quadratic polynomials so that the nonlinear AFEN method is readily applicable to the
transient calculation. The error associated with the quadratic source approximation is minimized by
reorganizing the transient neutron balance equation such that the resulting equation has less influence on the
flux induced from the source.

In the following section, a two-node AFEN solution method is derived for ’a fixed source problem. The
derivation is distinguished from the existing derivation’ in that an additional constraint of continuity in the
directional current is imposed at the corner points shared by the two nodes. In the derivation, the source
distribution is assumed to be quadratic in both x and y directions. Section III then describes the method for
constructing the quadratic source distribution. Node average values of the eigﬁt surrounding nodes as well as
the node itself are used in the process. Section IV presents the results of the applications of the method to the
calculation of a set of NEACRP PWR rod ejection benchmark problems.’ Finally, conclusion are drawn in

Section V.

II. Two-Node AFEN Solution for a Fixed Source Problem

In the nodal update step during the nonlinear iteration process, a two-node problem should be solved for
every nodal interface. The neutron balance equation to be solved in the two-node problem is derived by
integrating the two-group, three-dimensional neutron balance equation for a fixed source problem over the axial

direction and it is given as:
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Note that the flux (¢) and transient source vectors (Sy) are two-element vectors whose elements are defined
for each group. Eq. (1) is solved below based on the assumption that the distribution of the source that combines

the transient source and the axial leakage can be approximated by a quadratic polynomial of the following form:
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Determination of the coefficients b,]. is discussed in the next section.

Eq. (1) can be solved analytically in the interior of each node and the analytic solution consists of the
homogeneous and particular solutions, i.e.,
#(x,»)=¢" (x, ) +¢" (x,5) (6)

Employing the AFEN method, the homogeneous solution is obtained as:
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where the modal fluxes are defined as:
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with the generic functions, cn,and sn,, which are cosh and sinh functions, respectively, unless m=0 and

k. >k, in which case they become, respectively, cos and sin functions. The r and s factors appearing in the
transformation matrix in Eq. (7) are, respectively, the thermal-to-fast flux ratio corresponding to the fundamental
mode buckling ( BZ ) and the fast-to-thermal flux ratio for the first harmonics mode buckling ( B? ).

For the right hand side (RHS) given by a quadratic function of Eq. (4), the particular solution of Eq. (1) can

be obtained as:
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The coefficients of the particular solution can be determined easily by inserting Eq. (9) into Eq. (1) and by
requiring the coefficients of the same order functions appearing on both sides to be the same. The results are as

follows:
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On the second line above i'=iand j'= j+2 if j=0 and vice versa. Note that these coefficients are uniquely
determined at each node given b, ' s, without any constraints applied.

With the particular solution determined, there are sixteen homogeneous solution coefficients (8/mode x 2
modes) to be determined to finalize the solution at each node. In order to determine these coefficients uniquely
in a two-node problem, thirty-two constraints are needed since there are two sets of coefficients in the two-node
problem. The constraints provided per group in Ref. 2 were two node-average fluxes, six corner fluxes, four
surface-average transverse direction currents, two corner flux continuities (at the top and bottom corners on the

interface), and finally the continuity of surface averaged fluxes and currents. In the present derivation, however,



the two corner fluxes at the interface are not provided, but instead the corner current continuity condition is
imposed in the x-direction at the two corners located on the interface. The reason for this change is to eliminate
the additional calculation step needed to compute the corner fluxes accurately when the former scheme is
employed. The additional step is to determine the solution of a block penta diagonal linear system for comer
fluxes, which is obtained by imposing the constraint of so called the comer point balance (CPB).! The
computational overhead of the additional step could be eliminated by the use of the method of successive
smoothing (MSS) which is based on the assumption of linear flux variation near the corner points.? However, the
penalty of thé cruder evaluation of the corner fluxes by MSS appears in the accuracy of the solution.

In contrast to the CPB or MSS based corner flux evaluation schemes, the present scheme determines the
comner fluxes at the interface during the two-node solution. One problem, however, is that there are four
estimates of a corner flux because there are four two-node solutions obtained around a corner point at the end of
all the two-node calculations. This problem is overcome by taking the arithmetic average of the four estimates
and then by defining the averaged value as the true comer flux. Then it is possible to functionalize the corner
flux as a linear combination of the node average fluxes of the four surrounding nodes with the linear
combination coefficients being determined by the results of the four two-node calculations. Once the comer
point flux is represented as a function of node average fluxes, the new comer fluxes after a coarse mesh finite
difference (CMFD) calculation are calculated readily using the newly determined node average flux distribution.

When imposing the constraints, note that the contribution from the particular solution to the constraints
should be incorporated properly. For instance, the node average flux constraint on the homogenous solution
becomes:
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By imposing the thirty-two constraints, a 32x32 linear system is formulated for the thirty-two unknown
coefficients. Since the 32x32 matrix is sparse and have only a few distinct entries, the linear system can be
readily reduced algebraicélly to a 6x6 linear system containing the surface averaged currents and two corner
fluxes as unknowns. The interface currents (one for each group) determined by solving the 6x6 linear system are

then used to update the correctional nodal coupling coefficient for use in the subsequent CMFD calculation.
III. Formulation of Transient Fixed Source

The transient fixed source problem is formulated by applying a temporal differencing scheme to the
following time-dependent neutron diffusion eQ\iatioh: '
10¢
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The prompt fission operator in the above equation can be represented by F, =(/ - f)F where f is a matrix
representing node-wise total effective delayed neutron fractions and F is the operator for the total fission neutron
source that includes prompt and delayed neutrons.

There are several methods to discretize Eq. (12) in time. Typical examples are the fully-implicit fethod, the
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Crank-Nicholsen method (the 6 method with 8 being 0.5), the frequency transformation method, and so on. In
the following presentation, the fully-implicit method is used for simplicity. The presentation is, however,
applicable to all the other temporal discretization schemes. Applying the Euler method to Eq. (12) at time point
n yields:
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It can be shown’ that the delayed neutron source at #; (S ) in the above equation can be represented by the

n

fission source and a known delayed neutron source terms as S; = wF, 4, +S »~'so that Eq. (13) be transformed

into:
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where f, =1 -+ . Eq. (14) is the true transient fixed source problem to be solved during the transient

calculation. In principle, the intranodal distribution of the source appearing on the RHS of the above equation
can be obtained by using the intranodal flux distribution obtained at the previous time point. The source
distribution corresponding to the AFEN solution then consists of the sixteen terms of trigonometric and/or
hyperbolic functions. Since retaining the full source distribution is impractical in that it requires enormous
additional memory as well as in that the solution process of finding the particular solution becomes very
complicated, the source distribution here is approximated by a quadratic polynomial as given in Eq. (4). If the
source corresponding to the RHS of Eq. (14) is approximated by a quadratic polynomial, however, the error due
to the approximation may be significant because the absolute magnitude of the source is large. On the other hand,
since the operator on the LHS is different from the steady-state one, nonphysical perturbations could be
introduced so that even the solution of a null transient could not preserve the steady-state solution.

In these regards, the operator on the LHS is changed such that it is identical to the steady-state one and this

change yields a pseudo transient problem given as:
N"— 1 ”
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Note that this transform of the transient fixed source problem eliminates both the large source and the null

transient problems. It is necessary, however, to update the pseudo transient source (S,") iteratively using the

most recent values of the node average fluxes because it contains the fluxes at the current time point (¢,,). This
approach was originally introduced by Engrand and et. al.* and was implemented in a group of spatial kinetics
codes such as PARCS®.

The quadratic polynomial in two-dimensions, given by Eq. (4), contains nine coefficients. They can be
determined uniquely by using nine node-average effective source values out of which eight values come from
the eight nodes surrounding the node of interest. Note that the effective source is obtained by combining the
axial leakage and the transient source. An alternative to obtaining the quadratic polynomial is-to use the source
values at the four corners and the four surface values instead of those of the eight surrounding nodes, if they are
readily available. A crude approximation of the source distribution is to use a constant at each node or more

simply not to use the source at all. The impact of these cruder approximations are investigated in the next section



IV. Verification

For the sake of verification of the transient nonlinear AFEN method described in the previous sections, a
series of benchmark calculations for the NEACRP PWR control rod ejection probleni3 was performed using the
PARCS code® to which the nonlinear AFEN method is added as an additional calculation option. The basic
nodal method of the PARCS code is the nonlinear analytic nodal method (ANM) that is one of the transverse-
integrated nodal methods. The nonlinear ANM provides very accurate solutions to these benchmark problems as
long as four radial nodes are used per fuel assembly (FA). With one-node/FA, however, the accuracy of the
transient results deteriorates so that the errors in the core power change are not negligible. Hence the focus of
this verification was on the accuracy of the one-node/FA AFEN solution. |

Among the six benchmark problems, results are presented for the two most difficult problems, Cases A1 and
C1, that involve a single rod ejection at the center and at the periphéry of the core, respectively, from a initially
heavily rodded HZP state. Table I summarizes the eigenvalue calculation results for the initial steady state. It
compares the errors in the eigenvalue and in the radial power distribution for different radial node sizes and for
both the ANM and AFEN options. The reference power distribution was taken from a sixteen-nodes/FA ANM
solution and the boron concentration used were 560.93 and 1128.04 ppm for Cases Al and C1, respectively.
These are the critical concentrations for the sixteen-nodes/FA cases. Note that these values are very close to the
published reference values obtained by the PANTHER code® which are 561.20 and 1128.29 ppm, respectively.
As shown in Table I, the errors in k4 as well as in the power distribution are all negligible except for the one-
node/FA ANM cases. The corresponding AFEN cases, however, show remarkable improvements over the ANM
for both Cases Al and C1. This comparison demonstrates that the new two-node AFEN solution scheme derived
in Section II provides very accurate solutions even in the eigenvalue calculations.

The transient calculation results are shown in Figures 1 and 2. The upper part of each figure compares the
transient core power changes obtained by using both ANM and AFEN with one and four-nodes/FA, respectively,
together with the reference PANTHER solutions. On the other hand, the lower part compares three different
source treatment schemes employed in the two-node AFEN calculation for the one-node/FA configuration: no
source, constant source within each node, and the quadratic source distributions represented by Eq. (4). In both
lower parts, it is clearly demonstrated that the source treatment scheme affects the transient response
significantly and the use of the quadratic source distribution is essential. In the upper part of Figure 1, it is
shown that the four-nodes/FA ANM as well as AFEN solixtions agree well with thé reference, but the one-
node/FA ANM solution is very much off from the reference. The corresponding AFEN solution is much more
accurate than the ANM solution even' though it is slightly worse than the four-nodes/FA solutions. For Case Cl1,
the improvement of the solution attained by the AFEN method for the one-node/FA case is marginal since the
corresponding ANM solution is not as bad as in Case Al. From these comparisons, it can be drawn that the one-

node/FA AFEN solutions are reasonably good as long as the quadratic source treatment scheme is employed



V. Conclusions

A nonlinear AFEN method for efficient transient calculations was developed based on a quadratic
approximation of the intranodal source distribution and a new two-node AFEN solution scheme requiring
current continuity at the interface corner points. The new two-node AFEN solution scheme turned out to be very
accurate as shown.in the eigenvalue calculations presented in Table 1. The transient AFEN solution method
provides more accurate solutions than the ANM especially when one-node/FA is used. The slight error in the
transient core power response noted in the HZP rod ejection calculations might be reduced further if the source

distribution and consequently the particular solution is represented by higher order functions.
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Table 1. Comparison of Solution Accuracy for the Initial State Calculations of the Selected NEACRP Problems

Case Al Case C1

Nodes , K RPD Error, % K RPD Error, %
‘I;f: optien Er;f‘;r Max Max E’;f:’r Max Max
pem RMS Neg.. Pos.. pcm RMS Neg: Pos..
ANM 3.2 0.18 -0.16 0.42 4.7 0.10 -0.19 0.19
! AFEN -6.1 0.19 -0.49 0.20 -6.0 0.14 -0.45 0.20
ANM 42.8 2.14 -2.03 4.27 67.3 1.30 -2.26 2.57
: AFEN -3.1 0.57 -1.41 1.22 71 0.33 -0.60 0.76




Core Power, %

Core Power, %

Core Power, %

Core Power, %

Figure 1. Core Power Changes for

NEACRP A1 Obtained by Using Various Options
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Figure 2. Core Power Changes for NEACRP C1 Obtained by Using Various Options
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