• 제목/요약/키워드: Energy Flow Analysis

검색결과 2,229건 처리시간 0.029초

굴삭기 IMV용 비례 유량제어밸브 정특성 해석 (Static Analysis of Dedicated Proportional Flow Control Valve for IMV)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.

프란시스 수차 모델의 러너 간극에 따른 내부유동 및 성능 특성 (Internal Flow and Performance Characteristics According to the Runner Gap of a Francis Turbine Model)

  • 김승준;최영석;조용;최종웅;현정재;주원구;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권3호
    • /
    • pp.328-336
    • /
    • 2020
  • In the Francis turbine, the leakage flow through the runner gaps which are between the runner and the stator structure influences the internal flow and hydraulic performance. Thus, the investigation for the flow characteristics induced by the runner gaps is important. However, the runner gaps are often disregarded by considering the time and cost of the numerical analysis. Therefore, in this study, the flow characteristics according to runner gaps of the Francis turbine model were investigated including the leakage flow of the runner cone. The three-dimensional unsteady Reynolds-averaged Navier-Stokes analyses were conducted using a scale-adaptive simulation shear stress transport as a turbulence model for observing the influence of the leakage flow on the internal flow and hydraulic performance. The efficiencies were decreased slightly with runner gaps; and the complicated flows were captured in the gaps.

IDENTIFICATION OF TWO-DIMENSIONAL VOID PROFILE IN A LARGE SLAB GEOMETRY USING AN IMPEDANCE MEASUREMENT METHOD

  • Euh, D.J.;Kim, S.;Kim, B.D.;Park, W.M.;Kim, K.D.;Bae, J.H.;Lee, J.Y.;Yun, B.J.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.613-624
    • /
    • 2013
  • Multi-dimensional two-phase phenomena occur in many industrial applications, particularly in a nuclear reactor during steady operation or a transient period. Appropriate modeling of complicated behavior induced by a multi-dimensional flow is important for the reactor safety analysis results. SPACE, a safety analysis code for thermal hydraulic systems which is currently being developed, was designed to have the capacity of multi-dimensional two-phase thermo-dynamic phenomena induced in the various phases of a nuclear system. To validate the performance of SPACE, a two-dimensional two-phase flow test was performed with slab geometry of the test section having a scale of $1.43m{\times}1.43m{\times}0.11m$. The test section has three inlet and three outlet nozzles on the bottom and top gap walls, respectively, and two outlet nozzles installed directly on the surface of the slab. Various kinds of two-dimensional air/water flows were simulated by selecting combinations of the inlet and outlet nozzles. In this study, two-dimensional two-phase void fraction profiles were quantified by measuring the local gap impedance at 225 points. The flow conditions cover various flow regimes by controlling the flow rate at the inlet boundary. For each selected inlet and outlet nozzle combination, the water flow rate ranged from 2 to 20 kg/s, and the air flow rate ranged from 2.0 to 20 g/s, which corresponds to 0.4 to 4 m/s and 0.2 to 2.3 m/s of the superficial liquid and gas velocities based on the inlet port area, respectively.

Numerical Study of Chemical Performance of 30 tonf -class LRE Nozzle of KARI

  • Kang, Ki-Ha;Lee, Dae-Sung;Cho, Deok-Rae;Choi, H.S.;Choi, J.Y.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.448-451
    • /
    • 2008
  • Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were used to rocket nozzle flow, those were coupled with the methods of computational fluid dynamics code. For a design of high temperature rocket nozzle, chemical equilibrium analysis which shares the same numerical characteristics with frozen flow analysis can be an efficient design tool for predicting maximum thermodynamic performance of the nozzle. Frozen fluid analysis presents the minimum performance of the nozzle because of no consideration for the energy recovery. On the other hand, the case of chemical-equilibrium analysis is able to forecast the maximum performance of the nozzle due to consideration for the energy recovery that is produced for the fast reaction velocity compared with velocity of moving fluid. In this study, using the chemical equilibrium flow analysis code that is combined the modified frozen-equilibrium and the chemical-equilibrium. In order to understand the thermochemical characteristic components and the accompanying energy recovery, shifting-equilibrium flow analysis was carried out for the 30 $ton_f$-class KARI liquid rocket engine nozzle together with frozen flow. The performance evaluation based on the 30 $ton_f$-class KARI LRE nozzle flow analyses will provide an understanding of the thermochemical process in the nozzle and performances of nozzle.

  • PDF

Flow Factor Prediction of Centrifugal Hydraulic Turbine for Sea Water Reverse Osmosis (SWRO)

  • Ma, Ying;Kadaj, Eric;Terrasi, Kevin
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.369-378
    • /
    • 2010
  • The creation of the hydraulic turbine flow factor map will undoubtedly benefit its design by decreasing both the design cycle time and product cost. In this paper, the geometry and flow variables, which effectively affect the flow factor, are proposed, analyzed and determined. These flow variables are further used to create the operating condition maps by using different model approaches categorized into Response Surface Method (RSM) and Artificial Neural Network (ANN). The accuracies of models created by different approaches are compared and the performances of model approaches are analyzed. The influences of chosen variables and the combination of Principle Component Analysis (PCA) and model approaches are also studied. The comparison results between predicted and actual flow factors suggest that two-hidden-layer Feed-forward Neural Network (FFNN), and one.hidden-layer FFNN with PCA has the best performance on forming this mapping, and are accurate sufficiently for hydraulic turbine design.

옥외형 피난계단의 풍압에 따른 내구성 검증을 위한 유동-구조 연성해석 (Flow-structure Interaction Analysis for Durability Verification by the Wind Force of Outdoor Evacuation Stairs)

  • 이석영
    • 에너지공학
    • /
    • 제29권3호
    • /
    • pp.97-102
    • /
    • 2020
  • 본 연구에서는 화재가 발생하였을 때 작동되는 옥외형 피난계단 구조물이 태풍에 따른 풍압이 작용하였을 때 내구성을 검증하기 위하여 단방향 유동-구조 연성해석을 진행하였다. 이를 위해, 피난계단 구조물 주위에 대한 유동장을 정상상태로 유동해석을 수행하였고, 이러한 해석결과를 구조해석을 위한 입력 데이터로 사용하여 구조응력, 변형량, 피로수명 등의 계산을 통해 내구성을 분석하였다. 유동해석 결과, 피난계단 구조물 형상에 따라 공기에 의한 유동 흐름이 다르게 나타났으며, 이러한 유동속도 분포는 구조물 표면에 전압력으로 작용하였다. 또한, 이러한 전압력에 의해 계산된 구조해석 결과, 최대응력값으로 계산된 안전율이 허용치 이상으로 나타났으며, 피로수명과 변형량 분석을 통해 내구성을 입증하였다.

3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석 (Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method)

  • 김성희;홍석윤;길현권;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).

A 3-Dimensional Numerical Simulation of Impulse Turbine for Wave Energy Conversion

  • Lee, Hyeong-Gu;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.535-541
    • /
    • 2003
  • This paper describes numerical analysis of the impulse turbine with fixed guide vanes, a high performance hi-directional air turbine having simple structure for wane energy conversion. A 3-dimensional incompressible viscous flow numerical analysis based on the full Reynolds-averaged Wavier-Stokes equations was made to investigate the internal flow behavior Numerical results ate compared with experimental data. As a result, a suitable choice for the one of design factors has been clarified.

녹색섬 풍력자원평가 - 독도 (Wind Resource Assessment for Green Island - Dokdo)

  • 김현구;김건훈;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.94-101
    • /
    • 2012
  • A Dokdo wind resource map has been drawn up for the Green Island Energy Master Plan according to Korea's national vision for 'Low Carbon Green Growth'. The micro-siting software WindSim v5.1,which is based on Computational Flow Analysis, is used with MERRA reanalysis data as synoptic climatology input data, and sensitivity analysis on turbulence model is accompanied. A wind resource assessment has been conducted for the Dokdo wind power dissemination plan, which consists of two 10kW wind turbines to be installed at the Dongdo dock and Dokdo guard building. It is evaluated that the capacity factors at Dongdo dock and Dokdo guard building are about 20% and 30% respectively, and annual and hourly variations of wind power generation have been analyzed, but summertime energy production is predicted to be only 40% of wintertime energy production.

고체입자를 이용한 열교환기에서의 유동 및 열전달의 유한요소해석 (Finite element analysis of flow and heat transfer in solid particle moving beds of heat exchanger)

  • 이완술;윤성기;박상일
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.743-752
    • /
    • 1998
  • Numerical analysis for the flow and heat transfer in solid particle moving beds of heat exchangers is presented. The solid particle flow through the bundle of heat source tubes by the gravitational force. The heat energy is transferred through the direct contact of particles with the heat source tubes. The viscous-plastic fluid model and the convective heat transfer model are employed in the analysis. The flow field dominantly influences the total heat transfer in a heat exchanger. As the velocities of solid particles around the heat source tubes increase, the amount of heat transfer from the tubes increases. Some examples are presented to show the performance of the numerical model. The flow effect on the heat transfer is also studied through the examples.