• Title/Summary/Keyword: Energy Efficient Protocols

Search Result 188, Processing Time 0.026 seconds

The Energy Performance Analysis Between Synchronous and Asynchronous Duty Cycle based MAC Protocols in Wireless Sensor Networks (무선 센서네트워크 환경에서 Duty Cycle 기반 동기식 및 비동기식 MAC 프로토콜의 에너지 성능과 지연시간에 대한 상호 분석)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • Journal of Information Technology Services
    • /
    • v.10 no.3
    • /
    • pp.237-250
    • /
    • 2011
  • Recently, Wireless Sensor Networks (WSN) require energy performance and guaranteed delivery delay time, contrarily with previous MAC protocols that aim to high throughput mostly. In order to satisfy the new significant requirements, many MAC protocols of WSN employ and try to enhance the duty cycle mechanism which is energy efficient technique in MAC layer. This duty cycle mechanism is oriented by toggling the transceiver conditions composed of wakeup and sleep states. The synchronous MAC protocols perform the period synchronization process. Hence, these are energy efficient in periodic monitoring environment, but are inefficient in where an event is incurred rarely and infrequently. Otherwise, the performance of asynchronous MAC protocols are contrarily with synchronous protocols. In this paper, we design two models consisting Always-busy and Always-idle ti simplify the general network congestion conditions. Through these models, moreover, we analyze two types MAC protocols in terms of energy efficiency and delay performance by analytical results. Additionally, we also evaluate two MAC protocols with two gongestion models that we designed. By the analytical and simulated results, we provide the general and efficient decision method in which protocols are more appropriate in a certain WSN environment.

Fuzzy based Energy-Efficient Adaptive Routing Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 퍼지 기반 적응형 라우팅 알고리즘 및 시뮬레이션)

  • Hong, Soon-Oh;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.95-106
    • /
    • 2005
  • Recent advances in wireless sensor networks have led to many routing protocols designed for energy-efficiency in wireless sensor networks. Despite that many routing protocols have been proposed in wireless sensor networks, a single routing protocol cannot be energy-efficient if the environment of the sensor network varies. This paper presents a fuzzy logic based Adaptive Routing (FAR) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment. A simulation is performed to show the usefulness of the proposed algorithm.

  • PDF

Improvement of LECEEP Protocol through Dual Chain Configuration in WSN Environment(A-LECEEP, Advanced LEACH based Chaining Energy Efficient Protocol) (WSN 환경에서 이중체인 구성을 통한 LECEEP 프로토콜 개선(A-LECEEP))

  • Kim, Chanhyuk;Kwon, Taewook
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1068-1075
    • /
    • 2021
  • Wireless sensor network (WSN) can be usefully used in battlefields requiring rapid installation and operation by enabling surveillance and reconnaissance using small sensors in areas where any existing network infrastructure is not formed. As WSN uses battery, energy efficiency acts as a very important issue in network survivability. Layer-based routing protocols have been studied a lot in the aspect of energy efficiency. Many research selected LEACH and PEGASIS protocols as their comparison targets. This study examines the two protocols and LECEEP, a protocol designed by combining their advantages, and proposes a new protocol, A-LECEEP, which is more energy efficient than the others. The proposed protocol can increase energy efficiency compared to the existing ones by eliminating unnecessary transmissions with multiple chains configuration.

A Survey of QoS Based Routing Protocols for Wireless Sensor Networks

  • Sumathi, R.;Srinivas, M.G.
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.589-602
    • /
    • 2012
  • With the increasing demand for real time applications in the Wireless Senor Network (WSN), real time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Designing such QoS based routing protocol to meet the reliability and delay guarantee of critical events while preserving the energy efficiency is a challenging task. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. In this paper, we present the state of the research by summarizing the work on QoS based routing protocols that has already been published and by highlighting the QoS issues that are being addressed. The performance comparison of QoS based routing protocols such as SAR, MMSPEED, MCMP, MCBR, and EQSR has also been analyzed using ns-2 for various parameters.

Biologically Inspired Node Scheduling Control for Wireless Sensor Networks

  • Byun, Heejung;Son, Sugook;Yang, Soomi
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.506-516
    • /
    • 2015
  • Wireless sensor networks (WSNs) are generally comprised of densely deployed sensor nodes, which results in highly redundant sensor data transmissions and energy waste. Since the sensor nodes depend on batteries for energy, previous studies have focused on designing energy-efficient medium access control (MAC) protocols to extend the network lifetime. However, the energy-efficient protocols induce an extra end-to-end delay, and therefore recent increase in focus on WSNs has led to timely and reliable communication protocols for mission-critical applications. In this paper, we propose an energy efficient and delay guaranteeing node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique.With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

Design, Analysis and Implementation of Energy-efficient Broadcast MAC Protocols for Wireless Sensor Networks

  • Kang, Young-Myoung;Lim, Sang-Soon;Yoo, Joon;Kim, Chong-Kwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1113-1132
    • /
    • 2011
  • In wireless sensor networks (WSNs), most energy saving asynchronous MAC protocols are custom tailored for unicast communications only. However, broadcast protocols are very commonly used in WSNs for a variety of functionalities, such as gathering network topology information, event monitoring and query processing. In this paper, we propose a novel low-power asynchronous broadcast MAC protocol called Alarm Broadcast (A-CAST). A-CAST employs the strobe preamble that specifies the residual waiting time for the following data transmission. Each receiver goes back to sleep upon hearing the strobe preamble for the residual time duration, to conserve energy and to wake up just before data transmission starts. We compute the energy consumption of A-CAST via rigorous mathematical analysis. The analytic results show that A-CAST outperforms B-CAST, a simple broadcast extension of the well-known B-MAC. We also implement A-CAST on sensor motes and evaluated its performance through real experiments. Our experimental results show that A-CAST reduces the energy consumption by up to 222% compared to the previously proposed protocols.

A Cluster-Based Energy-Efficient Routing Protocol without Location Information for Sensor Networks

  • Lee, Gil-Jae;Kong, Jong-Uk;Lee, Min-Sun;Byeon, Ok-Hwan
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.49-54
    • /
    • 2005
  • With the recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low power consumption wireless micro sensor nodes have become available. However, energy-efficient routing is one of the most important key technologies in wireless sensor networks as sensor nodes are highly energy-constrained. Therefore, many researchers have proposed routing protocols for sensor networks, especially cluster-based routing protocols, which have many advantages such as reduced control messages, bandwidth re-usability, and improved power control. Some protocols use information on the locations of sensor nodes to construct clusters efficiently. However, it is rare that all sensor nodes know their positions. In this article, we propose another cluster-based routing protocol for sensor networks. This protocol does not use information concerning the locations of sensor nodes, but uses the remaining energy of sensor networks and the desirable number of cluster heads according to the circumstances of the sensor networks. From performance simulation, we found that the proposed protocol shows better performance than the low-energy adaptive clustering hierarchy (LEACH).

Interactive Multipath Routing Protocol for Improving the Routing Performance in Wireless Sensor Networks

  • Jung, Kwansoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.79-90
    • /
    • 2015
  • Multipath routing technique is recognized as one of the effective approaches to improve the reliability of data forwarding. However, the traditional multipath routing focuses only on how many paths are needed to ensure a desired reliability. For this purpose, the protocols construct additional paths and thus cause significant energy consumption. These problems have motivated the study for the energy-efficient and reliable data forwarding. Thus, this paper proposes an energy-efficient concurrent multipath routing protocol with a small number of paths based on interaction between paths. The interaction between paths helps to reinforce the multipath reliability by making efficient use of resources. The protocol selects several nodes located in the radio overlapped area between a pair of paths as bridge nodes for the path-interaction. In order to operate the bridge node efficiently, when the transmission failure has detected by overhearing at each path, it performs recovery transmission to recover the path failure. Simulation results show that proposed protocol is superior to the existing multipath protocols in terms of energy consumption and delivery reliability.

PRESSURE BASED ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS: A SURVEY

  • Khasawneh, Ahmad;Bin Abd Latiff, Muhammad Shafie;Chizari, Hassan;Tariq, MoeenUddin;Bamatraf, Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.504-527
    • /
    • 2015
  • Underwater wireless sensor networks (UWSNs) are similar to the terrestrial sensor networks. Nevertheless, there are different characteristics among them such as low battery power, limited bandwidth and high variable propagation delay. One of the common major problems in UWSNs is determining an efficient and reliable routing between the source node and the destination node. Therefore, researchers tend to design efficient protocols with consideration of the different characteristics of underwater communication. Furthermore, many routing protocols have been proposed and these protocols may be classified as location-based and location-free routing protocols. Pressure-based routing protocols are a subcategory of the location-free routing protocols. This paper focuses on reviewing the pressure-based routing protocols that may further be classified into non-void avoidance protocols and void avoidance protocols. Moreover, non-void avoidance protocols have been classified into single factor based and multi factor based routing protocols. Finally, this paper provides a comparison between these protocols based on their features, performance and simulation parameters and the paper concludes with some future works on which further study can be conducted.

An Energy Efficient Hybrid Routing Protocol Based on LEACH and PEGASIS (LEACH와 PEGASIS 기법에 기반한 에너지 효율적 하이브리드 라우팅 규약)

  • Lee, Young-Han;Lee, Hyun-Jun;Lee, Kyung-Oh
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.629-636
    • /
    • 2009
  • Since all sensor nodes in wireless sensor networks work by their own embedded batteries, if a node runs out of its battery, the sensor network can not operate normally. In this situation we should employ the routing protocols which can consume the energy of nodes efficiently. Many protocols for energy efficient routing in sensor networks have been suggested but LEACH and PEGASIS are most well known protocols. However LEACH consumes energy heavily in the head nodes and the head nodes tend to die early and PEGASIS - which is known as a better energy efficient protocol - has a long transfer time from a source node to sink node and the nodes close to the sink node expend energy sharply since it makes a long hop of data forwarding. We proposed a new hybrid protocol of LEACH and PEGASIS, which uses the clustering mechanism of LEACH and the chaining mechanism of PEGASIS and it makes the life time of sensor networks longer than other protocols and we improved the performance 33% and 18% higher than LEACH-C and PEGASIS respectively.