• Title/Summary/Keyword: Energy Efficiency Navigation

Search Result 87, Processing Time 0.023 seconds

Design of a PID-type Autopilot Concerned with Propulsive Energy of Ship (선박의 추진에너지를 고려한 PID형 자동조타기 설계)

  • Ahn, Jong-Kap;Lee, Chang-Ho;Lee, Yun-Hyung;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.437-442
    • /
    • 2009
  • The PID controller type autopilot is applied to support shipmaneuvering for course-keeping and heading control. A control constants of autopilot system should be evaluated by promoting energy loss (fuel consumption) from the view point of economic efficiency of the ship. This paper is obtained control constants of autopilot system from the RCGA pursued the minimum energy loss. In addition, the controller which is designed involves a constrained optimization problem. The performance of the proposed method is demonstrated through a set of simulation.

Study of Application of Impulse Turbine with Staggered Blades to Improve the Performance for Wave Energy Conversion (파력발전용 임펄스터빈의 효율 향상을 위한 Staggered Blade의 적용에 대한 연구)

  • Moon, Jae-Seung;Shin, Seung-Ho;Hyun, Beom-Soo;Kim, Gil-Won;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.845-852
    • /
    • 2007
  • An OWC-type Wave Energy Conversion passes through 3 steps energy conversion process. This paper deal with the impulse turbine with staggered blade to improved performance by numerical analysis using commercial CFD code, FLUENT Maximum value of axial airflow velocity during exhalation is higher than that during inhalation This paper deal with special-type of Impulse Turbine so-called "Staggered Blade" for more efficiency to making air flow direct to on pressure side. Also, this paper has proposed special-type turbine with self-pitched blade more efficient.

A Study on the Prediction of Fuel Consumption of a Ship Using the Principal Component Analysis (주성분 분석기법을 이용한 선박의 연료소비 예측에 관한 연구)

  • Kim, Young-Rong;Kim, Gujong;Park, Jun-Bum
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.335-343
    • /
    • 2019
  • As the regulations of ship exhaust gas have been strengthened recently, many measures are under consideration to reduce fuel consumption. Among them, research has been performed actively to develop a machine-learning model that predicts fuel consumption by using data collected from ships. However, many studies have not considered the methodology of the main parameter selection for the model or the processing of the collected data sufficiently, and the reckless use of data may cause problems such as multicollinearity between variables. In this study, we propose a method to predict the fuel consumption of the ship by using the principal component analysis to solve these problems. The principal component analysis was performed on the operational data of the 13K TEU container ship and the fuel consumption prediction model was implemented by regression analysis with extracted components. As the R-squared value of the model for the test data was 82.99%, this model would be expected to support the decision-making of operators in the voyage planning and contribute to the monitoring of energy-efficient operation of ships during voyages.

Comparative Results of Weather Routing Simulation (항로최적화기술 시뮬레이션 비교 결과)

  • Yoo, Yunja;Choi, Hyeong-Rae;Lee, Jeong-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • Weather routing method is one of the best practices of SEEMP (Ship Energy Efficiency Management Plan) for fuel-efficient operation of ship. KR is carrying out a basic research for development of the weather routing algorithm and making a monitoring system by FOC (Fuel Oil Consumption) analysis compared to the reference, which is the great circle route. The added resistances applied global sea/weather data can be calculated using ship data, and the results can be corrected to ship motions. The global sea/weather data such as significant wave height, ocean current and wind data can be used to calculate the added resistances. The reference route in a usual navigation is the great circle route, which is the shortest distance route. The global sea/weather data can be divided into grids, and the nearest grid data from a ship's position can be used to apply a ocean going vessel's sea conditions. Powell method is used as an optimized routing technique to minimize FOC considered sea/weather conditions, and FOC result can be compared with the great circle route result.

A Study on Entrance Section of Hybrid Wave Power Generation System (하이브리드형 파력발전시스템의 유입구 형상 연구)

  • Oh, Jin-Seok;Jang, Jae-Hee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.597-601
    • /
    • 2013
  • Recently, many studies about the wave power generation system for the marine structure as the hybrid form in linked with the original features have been made of. Of these, the wave power generation system using oscillating water column(OWC) has function to convert wave energy to electrical energy with original function of the break water structure. In this type of generation system, it is important to make the flow of sea water as much as possible without loss. Output characteristics of wave power generation system depending on entrance section were described in the paper. Also, flow quantity changing with entrance section, velocity of sea water and output of wells turbine were measured by simulating OWC wells turbine model in break water, one of the general marine structure. Finally, entrance section was suggested to enhance the energy conversion efficiency based on the results of simulation.

The Effect of Real-time Navigation on the Reduction of Greenhouse Gas Emission (실시간내비게이션의 온실가스 감축 영향력 분석)

  • Kim, Jeong Su;Oh, Junseok;Lee, Bong Gyou
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.35-42
    • /
    • 2013
  • This paper shows the positivistic approach for analyzing the effect of ICT on the reduction of greenhouse gas (GHG) emission. The real-time navigation was selected for the ICT based service in this research, and the CO2 reduction ratios of the optimized routes in the navigation were compared with the reduction ratios of the shortest routes in existing navigations. The results of experiments showed the driving based on the optimized routes has more reduction effects than the driving on the basis of the shortest routes. Also, new evaluation method for GHG emission was suggested by the quantification and monitoring approaches on the basis of the Clean Development Mechanism (CDM) in this paper. The results of this paper can be used as a preliminary research for the effect of ICT on the reduction of GHG emission. The evaluation method which suggested in this paper will be suggested to CDM as the new standard for the reduction of GHG emission in the transportation field as well.

A Study on the cooling system design for electric propulsion system in submarine (수중체 전기추진시스템용 냉각체계 설계에 관한 연구)

  • Oh, Jin-Seok;Jung, Sung-Young
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • In this paper, we analyze the current submarine cooling system and study control algorithms for cooling system. Cooling system are installed in the submarine propulsion motor to protect the motor from high-temperature by iron loss and copper loss. The cooling system control the sea water and fresh water pump RPM to keep the motor temperature stable by external environment and motor RPM holding time. The cooling system simulation program is made for checking the cooling performance, and simulation is performed with various control strategy. The results with proposed cooling algorithm is shown to improve the thermal stability and efficiency of cooling system.

A Study on Vehicular Positioning Technologies for Smart/Green Cars (스마트/그린형 자동차의 위치정보시스템에 관한 연구)

  • Ro, Kap-Seong;Oh, Jun-Seok;Dong, Liang
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.3
    • /
    • pp.92-101
    • /
    • 2010
  • Energy efficiency and safe mobility are the two key constituents of the future automobile. The technologies that enable these features are now heavily dependent upon information and communication technology rather than traditional auto-mechanical technology. This paper presents an exploratory project 'Smart&Green Vehicle Project' at Western Michigan University which is to improve the geographical location accuracy of vehicles and to study various applications of making such location data available. Global Positioning System (GPS), Inertial Navigation System (INS), Vehicular Ad-hoc Network (VANET) technology, and data fusion among these technologies are investigated. Testing and evaluation is done on systems which will gather vehicular positioning data during GPS signal loss. Vehicles in urban settings do not acquire accurate positioning data from GPS alone; therefore there is a need for exploration into technology that can assist GPS in urban settings. The goal of this project is to improve the accuracy of positioning data during a loss of GPS signal. Controlled experiments are performed to gather data which aided in assessing the feasibility of these technologies for use in vehicular platforms.

  • PDF

A Study on Power contorl for Hybrid electric propulsion system (하이브리드 전기 추진 시스템의 전력 제어에 관한 연구)

  • Oh, Jin-Seok;Jo, Kwan-Jun;Ham, Youn-Jae;Bae, Soo-Young;Lee, Ji-Young
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.765-770
    • /
    • 2008
  • This paper presents the power control for the hybrid electric propulsion system. In this paper, the hybrid propulsion system consists cf the generator and battery as power supply system in ship. The hybrid control system is designed with energy saving algorithm for decreasing the power consumption of power supply system. This paper suggests the method to increase efficiency of hybrid electric propulsion system by developing battery charging system. The performance of power control system is analyzed with the experiment equipment for hybrid propulsion system, and the results showed a good property.

Boil-Off Gas Reliquefaction System for LNG Carriers with BOG-BOG Heat Exchange (BOG 내부 열교환을 이용한 LNG 선박용 Boil-Off Gas 재액화 시스템)

  • Lee, Yoon-Pyo;Shin, You-Hwan;Lee, Sang-Hoon;Kim, Kwang-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.444-451
    • /
    • 2009
  • The price increase of natural resources and the worldwide growth of LNG demand led to save the waste of Boil-Off Gas evaporating from cargo tanks of LNG carriers during navigation. As one of the efforts, a BOG reliquefaction system with BOG-to-BOG heat exchanging method was newly devised. This study was also discussed on the process details such as some features and advantages including comparisons with conventional BOG reliquefaction system, non BOG-BOG heat exchange type. The thermodynamic analysis for the system were also performed. Through the cycle simulation, the process efficiency of the BOG reliquefaction system BOG-BOG heat exchange was estimated to be increased up to 21%.