• Title/Summary/Keyword: Energy Efficiency Improvement

Search Result 1,002, Processing Time 0.026 seconds

Improvement of Efficiency of Kalina Cycle and Performance Comparison (Kalina 사이클의 효율 향상 방안 및 성능 비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan;Son, Chang-Min;Seol, Sung-Hoon;Lee, Ho-Saeng;Kim, Hyeon-Ju
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.11-19
    • /
    • 2015
  • In this paper, EP-Kalina cycle applying liquid-vapor ejector and motive pump is newly proposed. In this EP-Kalina cycle, the liquid-vapor ejector is used to increase pressure difference between inlet and outlet of the turbine. Also the motive pump enhances the performance of liquid-vapor ejector, resulting in increase of system efficiency of OTEC cycles. The comparison cycles in this study are basic, Kalina, EKalina and EP-Kalina ones. The pump work, net power, APRe, APRc, TPP and system efficiency of each cycle are compared. In case of net power, EP-Kalina cycle is lowest among the cycles due to the application of the motive pump. But, the net power difference of cycles seems to be minor since the pump work of cycles is merely about 1kW, compared to turbine gross power of 20kW. The system efficiency of EP-Kalina cycle shows 3.22%, relatively 44% higher than that of basic OTEC cycle. Therefore, the system efficiency is increased by applying the liquid-vapor ejector and the motive pump. Additional performance analysis is necessary to optimize the proposed EP-Kalina cycle.

Determining Optimal Installed Capacity and the Interconnected Bus of Renewable Energy Sources Considering the Cost of Energy Not Supplied (정전비용을 고려한 신재생에너지원의 최적 연계 용량 및 연계 위치 결정에 관한 연구)

  • Kim, Sung-Yul;Lee, Sung-Hun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1393-1398
    • /
    • 2012
  • Due to environmental regulation and technical improvements, renewable energy sources (RES) are increasingly penetrated and operated in power systems. Clean energy technologies have become cost-competitive with conventional power systems, and in the near future, the generation cost of RES is expected to approach grid parity. In this situation, it should be considered an extraordinarily important issue to be maximized resulting in utilization of RES as well as to develop technologies for efficiency improvement of RES. Therefore, in this paper, the method for determining an optimal installed capacity and interconnected location of RES is proposed in order to minimize the cost of energy not supplied, which can contribute to improve distribution reliability.

Characteristics of Ozonizers Manufactured in Energy & Environment Electromagnetic Lab. of Yeungnam University

  • Song, Hyun-Jig;Kim, Ki-Chai;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.11-16
    • /
    • 1999
  • Discharge characteristics research for high voltage and large current electric machinery design, the development of ozonizer with high yield and efficiency for environment improvement, generation of plasma & laser and EMI EMC are research fields of Enersy & Environment Electromagnetic Laboratory(EEEL) in the school of electrical & electronic engineering of Yeungnam University. On this paper, we would like to introduce the discharge and ozone generation characteristics of ozonizers designed and manufactured by EEEL. After starting research for fluid gas discharge characteristics early in the 1980's, high voltage nozzle(HVN) type ozonizer, neon lamp(Nelamp) type ozonizer, ozone lamp(Olamp) type ozonizer and multi-discharge type ozonizer(MDO) have been investigated since 1990.

  • PDF

Home Energy Management System for Residential Customer: Present Status and Limitation

  • Lee, Sunguk;Park, Byungjoo
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.284-291
    • /
    • 2018
  • As environmental pollution has become worse green technologies to replace or reduce consumption of fossil fuel get spotlight from government, industry and academia globally. It is reported that 40% of carbon dioxide emission is caused by electricity power generation. And 37% of end user electricity power is used by residential costumer in US. Smart Grid is considered as one of promising technology to alleviate severe environmental problem. In residential environment, Home Energy Management System (HEMS) can play a key role for green smart home. The HEMS can give several benefits like aslowering electric utility bill, improvement of efficiency of electric power consumption and integration of generator using renewable energy resources. However just limited functions of HEMS can be used for residential customer in real life because of lack of smart function in home appliances and optimal managing software for HEMS. This study provides comprehensive analysis for Home Energy Management System for residential customer. Simple HEMS system with real products on the market are explained and limitation of current HEMS are also discussed.

Thin film solar cell efficiency improvement using the surface plasmon effect (표면 플라즈몬 효과를 이용한 박막형 태양전지 효율향상)

  • Byun, Soo-Hwan;Soh, Hyun-Jun;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.39-43
    • /
    • 2012
  • In spite of many advantages, the practical application of the thin film solar cell is restricted due to its low efficiency compared with the bulk type solar cells. This study intends to adopt the surface plasmon effect using nano particles to solve the low efficiency problem in thin film solar cells. By inserting Ag nano-particles in the absorbing layer of a thin film solar cell, the poynting vector value of the absorbing layer is increased due to the strong energy field. Increasing the value may give thin film solar cells chance to absorb more energy from the incident beam so that the efficiency of the thin film solar cell can be improved. In this work, we have designed the optimal shape of Ag nano-particle in the absorbing laser of a basic type thin film solar cell using the finite element analysis commercial package COMSOL. Design parameters are set to the particle diameter and the distance between each Ag nano-particle and by changing those parameters using the full factorial design variable set-up, we can determine optimal design of Ag nano-particles for maximizing the poynting vector value in the absorbing layer.

Improvement of external quantum efficiency of EL devices with PVK/P3DoDT blends using as a emitting layer (PVK/P3DoDT 블랜드를 발광층으로 사용한 EL 소자의 발광효율 향상에 관한 연구)

  • Kim, Ju-Seung;Seo, Bu-Wan;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.96-99
    • /
    • 2000
  • We fabricated electroluminescent(EL) devices which have a blended single emitting layer containing poly(N-vinylcarbazole)[PVK] and poly(3-dodecylthiophene)[P3DoDT]. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer, between polymer emitting layer and Al electrode. All of the devices emit orange-red light and its can be explained that the energy transfer occurs from PVK to P3DoDT. In the voltage-current and voltage-light power characteristics of devices applied LiF layer, current and light power drastically increased with increasing applied voltage. In the consequence of the result, the external quantum efficiency of the devices that have a molar ratio 1:1 with LiF layer was 35 times larger than that of the device without LiF layer at 6V.

  • PDF

Development of a High Efficiency Wood Pellet Boiler with Improved Safety (안전성을 고려한 고효율 목재펠릿 보일러 개발)

  • Chung, Chan-Hong;Park, Min-Cheol
    • Journal of Applied Reliability
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • Wood pellet is one of biomass energy fuels, which is produced by compressing woody biomass such as sawdust, planer shavings, and whole-tree removal or tree tops and branches leftover after logging into cylindrical form. Latterly much attention has been paid to wood pellet boiler which is suitable for use at various scales in domestic and industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing a high efficiency wood pellet boiler with 55MJ/h capacity. Efficiency has been improved by using a rotating disk burner with a shorter screw feeder. Special attention has been paid to the improvement of the safety of the wood pellet boiler from backfire by adopting a double protecting system composed of a shutter and an air curtain. The result shows that the efficiencies of the wood pellet boiler are 97.2% and 89.2% based on lower and higher heating values, respectively, at 15.1kW of heating output.

Positron Emission Computed Tomographs and Image Reconstruction Methods (PET 장치와 화상 재구성법)

  • Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.22 no.1
    • /
    • pp.5-11
    • /
    • 1999
  • This paper reviews recent major activities on instrumentation and methodology of PET. The performance of the PET instrumentation can be expressed by four physical characteristics, 1) spatial resolution, 2) coincidence resolving time, 3) energy resolution, and 4) detection efficiency. The physical and technical aspects of PET systems are briefly discussed along with these characteristics. Toward high resolution PET the recent trend has been to design multiple rings of densely packed detector arrays with scintillators. In order to satisfy the sampling requirement in reconstruction, continuous detector units has been developed. Iterative image reconstruction algorithms have received considerable attention for improvement of both the sampling requirement and image quality toward the stationary PET. Better resolving time improves the maximum true coincidence rate, which is also increased with more detectors placed in coincidence with each other. It suggests that volume PET is promising for enhancement of detection efficiency. The scattered coincidence event rate may be reduced by using detectors with better energy resolution. The use of interplane septa, however, takes over improvement of energy resolution in 2D PET. Energy resolution becomes an important factor for image quality under the condition of septa removal such as volume PET. Toward full utilization of emitting photons, 3D reconstruction incorporating oblique rays has been studied, and volume reconstruction algorithms have been developed. Practical volume PET systems impose heavy burden not only to detector sets and coincidence circuits, but also to computers in the memory requirements and the data processing. In conclusion, there have been many ingenious methods in development of PET instrumentation, which are based on unique capability of PET. They will be expected to overcome technical limitations, and to approach the fundamental limits.

  • PDF

Comparative Analysis of a Competitive Technology for a Major Electrical Power System

  • Koo, Young-Duk;Kim, Eun-Sun;Park, Young-Seo
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.243-246
    • /
    • 2004
  • Currently, advanced countries invest lots of efforts to develop improvement of electric power production and supply, confronting environmental problems and new energy development. They set up long term plan focusing on electric power transmission infrastructure construction technology, establishment of the customer care service network using electric technologies, improvement of economic productivity by innovative electric technology, prevention of global warming gas and clean and efficient energy use etc. Comparing to those countries, the level of technologies that we have are in behind and moreover, technological resources are limited. Therefore, Korea is required to reconsider efficient distribution of R&D investment by concentrating on limited R&D resources to important technologies which could be stepping stone to gain competitive advantage. It can be done through comparative analysis of electric technologies among advanced countries and analysis of electric technology development policy.

A study on the Improvement of Ventilation Performance in Apartment House According to the Location of Exterior Air-Vents (공동주택에서의 실외 급.배기구 위치에 따른 환기효율 향상 연구)

  • Park, Jin-Chul;Yu, Hyung-Kyu;Cha, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.71-79
    • /
    • 2005
  • In this study, the ventilation performance of mechanical ventilation system in apartment House was analyzed through model test according to characteristics of air-vent. Then adequate interval of air-vent was suggested using computer simulation which will create comfort environment through improvement of ventilation performance in apartment house. The result of experiment with separation plate to prevent mixture of contaminated exhaust air with fresh supply air, the ventilation efficiency improved about 10%. The result of simulation with horizontal location of exterior air-vent, contaminated exhaust air is mixed regardless of interval variation. Consequently, mixture of the exhaust air can be prevented through locating the supply air vent on the top side and exhaust air vent on the lower side.