• Title/Summary/Keyword: Energy Efficiency Improvement

Search Result 1,002, Processing Time 0.024 seconds

On the Improvement of the Combustibility of Waste Plastics used in Blast Furnace

  • Ban, Bong-Chan;Choi, Jin-Shik;Kim, Dong-Su
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.751-754
    • /
    • 2001
  • A possibility of using waste plastics as a source of secondary fuel in blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. for instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with the decrease of particle size, the combustibility of waste PE could be improved at a given distance from tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at longer distance from tuyere.

  • PDF

A Study on the Performance Improvement of Rotor Structure Modifications in Single-Phase Motors for Compressor Applications (압축기용 단상 전동기의 회전자 자계구조 변경에 따른 성능에 관한 연구)

  • Tae-Uk Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.325-332
    • /
    • 2024
  • Contemporary power systems demand efficient and sustainable technologies. Single-phase induction motors, while widely used, face efficiency challenges due to inherent rotor losses. Proposed solutions include the Line-start Permanent Magnet Synchronous Motor (LSPMSM), leveraging permanent magnets for enhanced energy density but facing demagnetization and cost issues. Alternatively, the Line-start Synchronous Reluctance Motor (LSRM) operates as a hybrid motor without permanent magnets, reducing rotor losses and potentially improving efficiency. This paper focuses on designing an LSRM rotor for air conditioner compressors, analyzing start-up characteristics and efficiency through finite element analysis. A comparative study with single-phase induction motors provides insights for future motor technology selection, balancing efficiency and other requirements.

Study on Energy Efficiency Improvement in Manufacturing Core Processes through Energy Process Innovation (에너지 프로세스 혁신을 통한 제조 핵심 공정의 에너지 효율화 방안 연구)

  • Sang-Joon Cho;Hyun-Mu Lee;Jin-Soo Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.43-48
    • /
    • 2023
  • Globally, there is a collaborative effort to achieve global carbon neutrality in response to climate change. In the case of South Korea, greenhouse gas emissions are rapidly increasing, presenting an urgent situation that requires resolution. In this context, this study developed a thermal energy collection device named a 'steam trap' and created an AI model capable of predicting future electricity usage by collecting energy usage data through steam traps. The average accuracy of electricity usage prediction with this AI model was 96.7%, demonstrating high precision. Consequently, the AI model enables the prediction and management of days with high electricity consumption and identifies which facilities contribute to elevated power usage. Future research aims to optimize energy consumption efficiency through efficient equipment operation using anomaly detection in steam traps and standardizing energy management systems, with the ultimate goal of reducing greenhouse gas emissions.

Fishing performance of hull form renovated tuna purse seiner (선형개조 다랑어 선망선의 조업성능)

  • HONG, Jin-Keun;KANG, Il-Kwon;JEONG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.321-332
    • /
    • 2015
  • In an attempt to find the improvement of the fishing efficiency according to the hull form remodeling for the 3 tuna purse seiner, the Catch-Per-Unit-Effort (CPUE) for that undertaken before (2008) and after (2010) was analyzed. In addition, the CPUE of 6 similar ships operated same period and same fishing ground. As result, it came to verify that the three modified ships had a significant value on the CPUE. An another index for the improvement of fishing efficiency is the rate of reduction of fuel oil consumption for the modified ships. Fuel oil consumption per day in service speed as comparing with the original ships were reduced 2.1%, 4.0% and 5.1% on the modified ship A, B, and C respectively. And each ship's service speed was increased 1.0 kt, 0.6 kt, and 0.4 kt according to the modified ship A, B, and C in due order. In the conclusion, the remodeling job with newly equipped bulbous bow, lengthened slipway and enlarged rudder area were improved fairly much on fuel oil efficiency, the ship's speed, and in the end, that led to the improving fishing efficiency. Hence, the remodeling of tuna purse seiner come to improve not only the fishing performance, but contribute to the reduction of operating cost by saving energy for the fisheries industry.

The Test Study on Driving Efficiency Improvement of Two-wheeled Electric Vehicle according to Regenerative Braking (전기 동력 이륜차의 회생제동에 따른 구동효율 향상에 관한 평가 연구)

  • Cho, Suyeon;Seo, Donghyun;Park, Junsung;Shin, Waegyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.635-641
    • /
    • 2016
  • Regenerative braking performance of an electrically powered vehicle is closely related to driving distance per battery charge. An electric vehicle uses appropriate amounts of mechanical braking force and electromagnetic regenerative braking force to recover energy and increase driving efficiency. In particular, when it drives on a downhill road, energy recovery rate is maximized through regenerative braking during coasting based on the mass inertia of the vehicle. Since an electric two-wheeled vehicle covered in this paper is lighter than an electric four-wheeled vehicle, the improvement of its driving distance per battery charge through regenerative braking is different from an electric four-wheeled vehicle. This study compared the driving characteristics of an electric two-wheeled vehicle based on regenerative braking. Two driving test modes were simulated with a chassis dynamometer system. By analyzing the measurement of a chassis dynamometer, the driving characteristics of a two-wheel electric vehicle, such as driving efficiency, were analyzed. In addition, test results were reviewed to draw the limitations of conventional test methods for regenerative braking performance of an electric two-wheel vehicle.

Fundamental Investigation Results on Ozone Generation Characteristics by Superimposed Discharge (중첩방전에 의한 오존생성 특성)

  • ;Chobei YAMABE
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • In addition to its strong oxidizing power, the ozone has definite advantages over other commercial oxidants, namely, no undesirable by- products or residues are formed. With growing interest in the improvement of the ozone production in the industrial fields, many types of ozonizer using the electrical discharges have been proposed for the higher efficiency and the higher Performance at atmospheric Pressure. Among them, a superposition of different type discharges has been proposed. Especially, since the improvement for the low efficiency of dc discharge and narrow gap of surface discharge is required, a do and an at voltage are applied to same reaction space (or volume) to increase energy density at the same space. An investigation was focused on the superposition with a dc (streamer) corona and 3 surface discharge. This paper describes the investigation results on fundamental ozone generation characteristics by this superimposed discharge.

A study on performance improvement of natural gas fueled engine (천연가스 기관의 성능 향상에 관한 연구)

  • 정동수;정진도;서승우;최교남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-179
    • /
    • 1992
  • Generally speaking, natural gas possesses several characteristics that make it desirable as an engine fuel : for example (1) lower production cost, (2) abundant commodity and (3) cleaner energy source than gasoline. Due to the physical characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of 10-20% when compared to a convensional gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of air/fuel ratio, spark timing advance and supercharging effect by forced air supply method.

A Study on the Characteristic of Dye-sensitized Solar Cell by Controlling the Roughness Factor of Counter Electrode (염료감응형 태양전지의 상대전극 Roughness Factor 조절을 통한 셀 특성 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Lee, Kyoung-Jun;Kim, Jeong-Hoon;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.428-430
    • /
    • 2008
  • Dye-sensitized solar cell has many internal resistant components such as Pt counter electrode, $TiO_2$/dye/electrolyte, charge diffusion, sheet resistance of TCO. Among these, the resistance about the counter electrode can be reduced by increasing the roughness factor of Pt counter electrode. This causes the increase of fill factor and improvement of efficiency. And the amount of light reflection on the counter electrode also increases as the roughness factor goes up. In our experiment, we suggest a new deposition structure of Pt thin film that is a stepped-type structure. The more step lines are in the counter electrode, the more roughness factor is. As a result, we get the improvement of fill factor and efficiency by controlling the roughness factor of counter electrode.

  • PDF

A Study on the Energy Efficiency Improvement according to Operation Condition of Solar Thermal System in Office Buildings (사무소 건물의 태양열 시스템 운영조건 변화에 따른 에너지 효율 향상에 관한)

  • Jung, Young-Ju;Kim, Seok-Hyun;Lee, Yong-Ho;Hwang, Jung-Ha;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.109-115
    • /
    • 2014
  • The supply rate of renewable energy has been increasing under the influence of an energy scarcity. Government has supported the use of renewable energy by government subsidies. The operation of renewable may not been operating appropriately, although increasing the use of renewable energy. We found out some problems of the operation of renewable energy and offered some improvements. This research proposes the efficient operation method for the solar thermal system, and proposed operation method was compared and evaluated with existing operation strategy after selecting one building installed solar thermal system. Recently, the interest to renewable energy has increased because of the environmental issues and energy crisis. However the utilization of the renewable energy system is low because of the use of renewable energy system and existing renewable energy system independently, although supply rate of renewable system is increasing. Especially, in the case of solar thermal system heating load is not responsible for the load of hot water supply in many cases. Therefore, suggesting efficient operation plans and evaluations of the energy consumption and efficiency of a solar thermal system is needed.

Assessment of Energy Efficiency and Nutrient Balance in Organic Rice Farming Area (벼유기농업단지 에너지효율 및 양분수지 평가)

  • Gil, Geun-Hwan;Kang, Jong-Gook;Lee, Kyung-Do;Lee, Jang-Hee;Lee, Kyeong-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.267-273
    • /
    • 2008
  • Energy efficiency and nutrient balance are good methods for environmental assessment of the environmentally-friendly agriculture. The objectives of this study were 1) to estimate the energy efficiency and nutrient balance of the organic rice farming, and 2) to suggest a solution to improvement the energy efficiency and nutrient balance. The set of estimation was performed at the organic rice farming area (8.9 ha) in Wanju-gun during the paddy cultivation period from 2006 to 2007. The organic farming complex consists of four weeding methods using 1) duck, 2) apple snail, 3) duck and apple snail and 4) hands and machinery. Results from this estimation should that the organic rice farming area was less efficient than conventional rice farming. The efficiency of organic farming area in 2006 was higher than in 2007. For the calculation of the nutrient balance, the N, P and K contents of input materials (cattle manure, milk vetch, mixed oilcake, rice bran, rice straw and barley straw) and output (farm products) were analysed. Annual environmental loads of N, $P_2O_5$ and $K_2O$ were estimated at 4.4 kg/10a, 13.8 kg/10a and 14.5 kg/10a, respectively. Cattle manure had the largest portion among the inputs items and nutrient concentration of cattle manure was high. Thus energy efficiency and nutrient balance depend on cattle manure input. Therefore it is necessary to control the manure input to improve the efficiency of organic rice farming.