• Title/Summary/Keyword: Energy Effect Reduction

Search Result 1,289, Processing Time 0.031 seconds

Pulsed Electric Fields Effects on Drying of White Ginseng and Extraction of Soluble Components (백삼의 건조와 가용성 성분 추출에 미치는 pulsed electric fields(PEF)의 효과)

  • Lim, Jeong Ho;Shim, Jae Min;Lee, Dong Un;Kim, Young Ho;Park, Kee-Jai
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.704-710
    • /
    • 2012
  • This study was designed to investigate the effect of pulsed electric fields on the drying of ginseng and extraction of dried ginseng to reduce energy-consumption. Fresh ginseng was treated in a PEF system of 1 and 2 kV/cm electric field strength, 25 and 200 Hz of frequency, $30{\mu}s$ of pulse width and pulse number of 175. The samples were subsequently dried for 26 h at $55{\pm}1^{\circ}C$, and the characteristic of hot-water extraction on dried ginseng was investigated. The ginseng pretreated with an intensity of 2 kV/cm (200 Hz, n=175) resulted in a reduction of approximately 38% for drying time. The influence of PEF treatment on the water extraction of dried ginseng at $95{\pm}1^{\circ}C$ was also investigated. The application of an electric field intensity of 2 kV/cm (25 and 200 Hz, n=175) increased soluble solid content, significantly reducing sugar content and free sugar content of the extract compared to non-PEF-treated samples.

Stability Evaluation of Rear-Parapet Caisson Breakwaters under Regular Waves by Numerical Simulation (수치해석을 통한 규칙파를 받는 후부 패러핏 케이슨 방파제의 안정성 평가)

  • Lee, Byeong Wook;Park, Woo-Sun;Ahn, Sukjin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, using the CADMAS-SURF model, the characteristics of the wave pressures and the wave forces were analyzed according to the installation position of the parapet on top of the caisson, and the stability evaluation was carried out using estimated wave forces for the design wave condition. Numerical results show that adopting the rear-parapet reduces the front maximum wave pressures and wave forces, and the maximum wave pressure acting on the rear-parapet increases slightly compared to the front parapet, but the wave force acting on the rear-parapet has little effect on the stability of the breakwater due to the phase difference with the wave force acting on the front of the breakwater. In addition, impulsive wave pressures did not occur, as Yamamoto et al. (2013) pointed out the problem of the rear-parapet breakwater. As a result of the stability against sliding and overturning, it was estimated that the target safety factor of 1.2 could be secured by the self-weight of 13% less than the case of the front parapet. At this time, the maximum ground pressure was also reduced by 30%, and the applicability of the rear-parapet structure to the actual site was evaluated as high.

Analysis of 226Ra in the Groundwater Using the Gamma-ray Spectroscopy (감마선 분광법을 이용한 지하수 중의 226Ra 분석)

  • Seo, Bum-Kyoung;Lee, Kil-Yong;Yoon, Yoon-Yeol;Lee, Kune-Woo
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.39-47
    • /
    • 2003
  • The measurement of radium ($^{226}Ra$) in the groundwater was established using ${\gamma}$-ray spectroscopy without sample preparation. The background interference by air borne radon daughter nuclides was reduced by $N_2$ gas flow into the counting chamber. Leakage of radon gas produced in the radioactive equilibrium with radium and its daughter nuclides was prevented by use of the air-tighted aluminium container. We investigated the effect of air layer in the counting container. Radioactivity variation due to emanation of radon into the air layer was within the counting error range 5%. When the nitrogen gas was flowed around the detector, peak counts of ${\gamma}$-rays from the daughters of airborne radon was decreased and detection limit was decreased to 0.02 Bq/L. The detection limit of detector was lower than 0.74 Bq/L, the $^{226}Ra$ Maximum Contaminant Level (MCL) in the groundwater proposed by US Environmental Protection Agency (EPA). It was confirmed that $^{226}Ra$ radioactivity in the groundwater could be determined by the ${\gamma}$-ray spectroscopy.

Analysis of the artifact reduction rate for the types of medical metals in CT with MAR algorithm (CT의 MAR알고리즘 적용 시 의료용 금속 물질별 인공물 감소율 분석)

  • Kim, Hyeon-ju;Yoon, Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.655-662
    • /
    • 2016
  • We investigated on the usefulness of MAR algorithm by making a comparison of the CT value between before and after applying the MAR algorithm in dual energy CT, using the various kinds of medical metals, causing the artifact to lead to the low image quality. As a result, the artifact was reduced in most cases (P<0.05); in particular, the artifact was highly reduced (P<0.05) using high density material, like alloy-stainless (reduced by 78.1%) and platinum, for example GDC coil (reduced by 76.1%). The effect of decreasing the Black hole artifact was outstanding in both the alloy-stainless and alloy-titanium (P<0.05). However, in case of GDC coil-a type platinum, white streak artifact was reduced effectively (P<0.05). Therefore, in case of patients who have medical metals inserted, we think that high-quality image information can be provided by decreasing the artifact caused by high density material through MAR algorithm in dual energy CT.

Effect of Dispersion Solvent on Properties of Fluorinated Polymer Reinforced Composite Membrane for Fuel Cell by Solution Coating Method (용액 코팅법을 통한 연료전지용 불소계 전해질 강화복합막의 특성에 미치는 분산용매의 영향)

  • Yook, Seung Ho;Yoon, Ki Ro;Choi, Jihun;Lee, Ju Sung;Kim, Jong Min;Lee, Seung Woo;Lee, Kwan-Young;Kim, Jin Young
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.413-419
    • /
    • 2019
  • In the recent, as a world demand of energy resources has been transformed from fossil fuels to hydrogen-based clean energy resources, a huge attention has been attracted to increase the performance and decrease a production cost of core materials in fuel cell technology. The utilization of reinforced composite membranes as electrolytes in the polymer electrolyte membrane fuel cells can reduce the use of high cost perfluorosulfonic acid (PFSA), mitigate the cell impedance, and improve the dimensional stability as well as the interfacial stability, giving rise to achieve both an improved performance and a reduction of production costs of the fuel cell devices. In this study, we investigate the effects of physical characteristics and cell performances according to the various ionomer solvents in the solution based manufacturing process of reinforced composite electrolyte membrane.

Enhancement of Electrochemical Performance of Cathode by Optimizing Laccase-Carbon Nanotubes Layers for Enzymatic Fuel Cells (Laccase-탄소나노튜브 적층을 통한 효소 연료전지의 cathode 성능 향상)

  • Wang, Xue;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.550-556
    • /
    • 2022
  • The performance of enzymatic fuel cells that convert chemical energy contained in various organic molecules such as sugar, alcohol, organic acids, and amino acids into electrical energy is greatly affected by the cathode as well as the anode. This study aimed to develop a laccase-based cathode with high performance. An enzyme composite composed of an laccase, redox mediator, and carbon nanotubes was immobilized on the surface of electrode in multiple layers, and the effect of the number of layers and the presence or absence of carbon nanotubes on electrode performance was investigated. As the number of layers of the enzyme-mediator (Lac-(PVI-Os-dCl)) on the electrode surface increased, the amount of reduction current generated at the electrode increased. The enzyme-carbon nanotube-mediator composite electrode (Lac-SWCNTs-(PVI-Os-dCl)) generated a current 1.7 times greater than that of the Lac-(PVI-Os-dCl). It was found that the largest amount of current (10.1±0.1 µA) was generated in the electrode composed of two layers of Lac-(PVI-Os-dCl) and two layers of Lac-SWCNTs-(PVI-Os-dCl) in the evaluation of electrodes with different ratio of Lac-SWCNTs-(PVI-Os-dCl) and Lac-(PVI-Os-dCl). The maximum power density of the cell using the cathode composed of a single layer of Lac-(PVI-Os-dCl) and the cell using the optimized cathode were 0.46±0.05 and 1.23±0.04 µW/cm2, respectively. In this study, it was demonstrated that the performance of cathode and the enzymatic fuel cell using the same can be improved by optimizing the layers of composites composed of laccase, redox mediator, and carbon nanotubes on the electrode surface.

Numerical Study on Ignition Delay Time of CH4 as CO/H2 Addition in MILD Combustion (MILD 연소 환경에서 CO/H2 첨가에 따른 CH4의 점화 지연 시간의 해석적 연구)

  • Kim, Donghee;Huh, Kang Y.;Lee, Youngjae
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • MILD(Moderate or Intense Low-oxygen Dilution) combustion has attracted attention as the clean thermal energy technology due to the lower emissions of unburnt carbon and NOx. MILD combustion aims to enlarge the combustion reaction zone using the spontaneous ignition phenomenon of the reactants. In this study, the ignition delay time of CH4 according to the initial temperature of reactants and the addition of CO, H2 was investigated using a numerical approach. Ignition delay time became shorter as the increases of initial temperature and H2 addition. But, CO addition to the fuel increase the ignition delay time. In case of H2 addition to the fuel, the ignition delay time decreased because the higher fraction of HO2 promotes the decomposition of methyl radical(CH3) and produce OH radical. However, in case of CO addition to the fuel, ignition delay time inceased because a high proportion of HCO consumes H radical. There was no significant effect of HCO on the reduction of ignition delay time. Also, the increase rates of NO emissions by the addition of CO and H2 were approximately 7% and 1%, respectively. A high proportion of NCO affects the increase in NO production rate.

Muscle oxygenation, endocrine and metabolic regulation during low-intensity endurance exercise with blood flow restriction

  • Hwang, Hyejung;Mizuno, Sahiro;Kasai, Nobukazu;Kojima, Chihiro;Sumi, Daichi;Hayashi, Nanako;Goto, Kazushige
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.30-37
    • /
    • 2020
  • [Purpose] The present study investigated the effect of endurance exercise with blood flow restriction (BFR) performed at either 25% maximal oxygen uptake (${\dot{V}}O_2$ max) or 40% ${\dot{V}}O_2$ max) on muscle oxygenation, energy metabolism, and endocrine responses. [Methods] Ten males were recruited in the present study. The subjects performed three trials: (1) endurance exercise at 40% ${\dot{V}}O_2$ max without BFR (NBFR40), (2) endurance exercise at 25% ${\dot{V}}O_2$ max with BFR (BFR25), and (3) endurance exercise at 40% ${\dot{V}}O_2$ max with BFR (BFR40). The exercises were performed for 15 min during which the pedaling frequency was set at 70 rpm. In BFR25 and BFR40, 2 min of pressure phase (equivalent to 160 mmHg) followed by 1 min of release phase were repeated five times (5 × 3 min) throughout 15 minutes of exercise. During exercise, muscle oxygenation and concentration of respiratory gases were measured. The blood samples were collected before exercise, immediately after 15 min of exercise, and at 15, 30, and 60 minutes after completion of exercise. [Results] Deoxygenated hemoglobin (deoxy-Hb) level during exercise was significantly higher with BFR25 and BFR40 than that with NBFR40. BFR40 showed significantly higher total-hemoglobin (total-Hb) than NBFR40 during 2 min of pressure phase. Moreover, exercise-induced lactate elevation and pH reduction were significantly augmented in BFR40, with concomitant increase in serum cortisol concentration after exercise. Carbohydrate (CHO) oxidation was significantly higher with BFR40 than that with NBFR40 and BFR25, whereas fat oxidation was lower with BFR40. [Conclusion] Deoxy-Hb and total Hb levels were significantly increased during 15 min of pedaling exercise in BFR25 and BFR40, indicating augmented local hypoxia and blood volume (blood perfusion) in the muscle. Moreover, low-and moderate-intensity exercise with BFR facilitated CHO oxidation.

Synthesis of High-purity Silicon Carbide Powder using the Silicon Wafer Sludge (실리콘 기판 슬러지로부터 고순도 탄화규소 분말 합성)

  • Hanjung Kwon;Minhee Kim;Jihwan Yoon
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.60-65
    • /
    • 2022
  • This study presents the carburization process for recycling sludge, which was formed during silicon wafer machining. The sludge used in the carburization process is a mixture of silicon and silicon carbide (SiC) with iron as an impurity, which originates from the machine. Additionally, the sludge contains cutting oil, a fluid with high viscosity. Therefore, the sludge was dried before carburization to remove organic matter. The dried sludge was washed by acid cleaning to remove the iron impurity and subsequently carburized by heat treatment under vacuum to form the SiC powder. The ratio of silicon to SiC in the sludge was varied depending on the sources and thus carbon content was adjusted by the ratio. With increasing SiC content, the carbon content required for SiC formation increased. It was demonstrated that substoichiometric SiCx (x<1) was easily formed when the carbon content was insufficient. Therefore, excess carbon is required to obtain a pure SiC phase. Moreover, size reduction by high-energy milling had a beneficial effect on the suppression of SiCx, forming the pure SiC phase.

A Study on Ventilation Characteristics in Fuel Preparation Room of Hydrogen Fueled Vessel (수소추진선박의 연료준비실내의 환기특성에 관한 연구)

  • Bo Rim Ryu;Phan Anh Duong;Quoc Huy Nguyen;Hokeun Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.158-159
    • /
    • 2022
  • Due to the climate crisis, various environmental regulations including greenhouse gas reduction are in effect. This is not limited to any specific industry sector, but is affecting the entire industry worldwide. For this reason, the IMO and governments of each country are announcing strategies and policies related to the shipbuilding and shipping industries. The current regulations can be partially resolved through additional facilities such as scrubbers while using existing fossil fuels, but ultimately, the emission of greenhouse gases such as CO2 from the exhaust gases generated by ships must be restricted through energy conversion. To this end, it is necessary to develop fuels that can replace traditional fuels such as oil and natural gas. Among them, hydrogen is attracting attention as a clean energy that does not emit pollutants when used as a fuel. However, hydrogen has a wide explosive range and a fast dispersion speed, so research on this is necessary. Therefore, in this paper, when hydrogen leakage occurs in the fuel preparation room of a hydrogen-powered ship, the trend was analyzed and the ventilation characteristics were investigated.

  • PDF