Acknowledgement
이 성과는 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2020R1F1A1054433, 2017R1D1A1B03029032).
References
- Martinez-Ortiz, J., Flores, R. and Vazquez-Duhalt, R., "Molecular Design of Laccase Cathode for Direct Electron Transfer in a Biofuel Cell," Biosens. Bioelectron., 26, 2626-2631(2011). https://doi.org/10.1016/j.bios.2010.11.022
- Xiao, X., Xia, H., Wu, R., Bai, L., Yan, L., Magner, E., Cosnier, S., Lojou, E., Zhu, Z. and Liu, A., "Tackling the Challenges of Enzymatic (Bio)Fuel Cells," Chem. Rev., 119, 9509-9558(2019). https://doi.org/10.1021/acs.chemrev.9b00115
- Zhao, C., Gai, P., Song, R., Chen, Y., Zhang, J. and Zhu, J., "Nanostructured Material-Based Biofuel Cells: Recent Advances and Future Prospects," Chem. Soc. Rev., 46, 1545-1546(2017). https://doi.org/10.1039/c6cs00044d
- Kadam, A. A., Saratale, G. D., Ghodake, G. S., Saratale, R. G., Shahzad, A., Magotra, V. K., Kumar, M., Palem, R. R. and Sung, J., "Recent Advances in the Development of Laccase-Based Biosnesors via Nano-Immobilization Technique," Chemosensors, 10, 58(2022).
- Yu, S. and Myung, N. V., "Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel cells," Front. Chem, 8, 620153(2021).
- Hussein, L., Rubenwolf, S., Stetten, F. V., Urban, G., Zengerie, R., Kruger, M. and Kerzenmacher, S., "A Highly Efficient Buckypaper-Based Electrode Material for Mediatorless Laccase-Catalyzed Dioxygen Reduction," Biosens. Bioelectron., 26, 4133-4138(2011). https://doi.org/10.1016/j.bios.2011.04.008
- Gentil, S., Pailley, P. R., Sancho, F. Robert, V., Mekmouche, Y., Guallar, V., Tron, T. and Goff, A. L., "Efficiency of Site-Specific Clicked Laccase-Carbon Nanotubes Biocathodes Towards O2 Reduction," Chemistry, 26, 4798-4804(2020). https://doi.org/10.1002/chem.201905234
- Gu, Y., Yuan, L., Jia, L., Xue, P. and Yao, H., "Recent Developments of a Co-Immobilized Laccase-Mediator System: A Review," RSC Adv., 11, 29498-29506(2021). https://doi.org/10.1039/D1RA05104K
- Scodeller, P., Carballo, R., Szamocki, R., Levin, L., Forchiassin, F. and Calvo, E. J., "Layer-by-Layer Self-Assembled Osmium Polymer-Mediated Laccase Oxygen Cathodes for Biofuel Cells: The Role of Hydrogen Peroxide," J. AM. Chem. Soc., 132, 11132-11140(2010). https://doi.org/10.1021/ja1020487
- Szamocki, R., Flexer, V., Levin, L., Forchiasin, F. and Calvo, E. J., "Oxygen Cathode Based on a Layer-by-Layer Self-Assembled Laccase and Osmium Redox Mediator," Electrochim. Acta, 132, 11132-11140(2010).
- Wang, X., Zhang, Y. Q., Kim, H.-K. and Kim, C.-J., "Separate Immobilization of Glucose Oxidase and Trehalase, and Optimization of Enzyme-Carbon Nanotube Layers for the Anode of Enzymatic Fuel Cells Utilizing Trehalose," Electrochim. Acta, 392, 138974(2021).
- Wang, X., Kim, J. H., Khang, D., Kim, H.-K. and Kim, C.-J., "Fabrication of Optimally Configured Layers of SWCNTs, Gold Nanoparticles, and Glucose Oxidase on ITO Electrodes for HighPower Enzymatic Biofuel Cells," Korean J. Chem. Eng., 36, 1172-1183(2019). https://doi.org/10.1007/s11814-019-0278-y
- Mishra, A., Bhatt, R., Bajpai, J. and Bajpai, A. K., "Nanomaterials Based Biofuel Cells: A Review," Int. J. Hydrog. Energy, 46, 19085-19105(2021). https://doi.org/10.1016/j.ijhydene.2021.03.024
- Shin, H. and Kang, C., "Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode," Bull. Korean Chem. Soc., 31, 3118-3122(2010). https://doi.org/10.5012/bkcs.2010.31.11.3118
- Zhao, W., Xu, J.-J. and Chen, H.-Y., "Multilayer Membrane via Layer-by-Layer Deposition of Organic Polymer Protected Prussian Blue Nanoparticles and Glucose Oxidase for Glucose Biosensing," Langmuir, 21, 9630-9634(2005). https://doi.org/10.1021/la051370+
- Lalaoui, N., David, R., Jamet, H., Holzinger, M., Goff, A. L. and Cosnier, S., "Hosting Adamantane in the Substrate Pocket of Laccase: Direct Bioelectrocatalytic Reduction of O2 on Functionalized Carbon nanotubes," ACS Catal., 6, 4259-4264(2016). https://doi.org/10.1021/acscatal.6b00797
- Joshi, P. P., Merchant, S. A., Wang, Y. and Schmidtke, D. W., "Amperometric Biosensors Based on Redox Polymer-CarbonNanotube-Enzyme Composites," Anal. Chem., 77, 3183-3188(2005). https://doi.org/10.1021/ac0484169
- Ding, S.-N., Holzinger, M., Mousty, C. and Cosnier, S., "Laccase Electrodes Based on the Combination of Single-Walled Carbon Nanotubes and Redox layered Double Hydroxides: Toward the Development of Biocathode for Biofuel Cells," J. Power Sources, 195, 4714-4717(2010). https://doi.org/10.1016/j.jpowsour.2010.02.033
- Wang, Y., Joshi, P. P., Hobbs, K. L., Johnson, M. B. and Schmidtke, D. W., "Nanostructured Biosensors Built by Layer-by-Layer Electrostatic Assembly of Enzyme-Coated Single-Walled Carbon Nanotubes and Redox Polymers," Langmuir, 22, 9776-9783(2006). https://doi.org/10.1021/la060857v
- Shin, H. and Kang, C., "Enhanced Performance of the WiredBilirubin Oxidase Oxygen Cathode with Incorporation of Carboxylated Single-Walled Carbon Nanotubes," Electrochim. Acta, 115, 599-606(2014). https://doi.org/10.1016/j.electacta.2013.10.213
- Osman, M. H., Shah, A. A. and Walsh, F. C., "Recent Progress and Continuing Challenges in Bio-fuel Cells. Part I: Enzymatic Cells," Biosens. Bioelectron, 26, 3087-3102(2011). https://doi.org/10.1016/j.bios.2011.01.004