DOI QR코드

DOI QR Code

Laccase-탄소나노튜브 적층을 통한 효소 연료전지의 cathode 성능 향상

Enhancement of Electrochemical Performance of Cathode by Optimizing Laccase-Carbon Nanotubes Layers for Enzymatic Fuel Cells

  • 왕설 (경상국립대학교 화학공학과 및 그린에너지 연구소) ;
  • 김창준 (경상국립대학교 화학공학과 및 그린에너지 연구소)
  • Wang, Xue (Department of Chemical Engineering and RIGET, Gyeongsang National University) ;
  • Kim, Chang-Joon (Department of Chemical Engineering and RIGET, Gyeongsang National University)
  • 투고 : 2022.04.12
  • 심사 : 2022.05.30
  • 발행 : 2022.11.01

초록

당, 알코올, 유기산 및 아미노산 등과 같은 다양한 유기물에 포함된 화학에너지를 전기에너지로 전환시키는 효소 연료전지의 성능은 anode 뿐만 아니라 cathode에도 큰 영향을 받는다. 본 연구의 목적은 laccase 기반의 고성능 cathode 전극을 개발하는데 있다. 효소, 전자전달체 및 탄소나노튜브로 구성된 효소 복합체를 제조하고 이를 전극 표면에 다층으로 부착하며 층수 및 탄소나노튜브의 첨가 유무가 전극 성능에 미치는 영향을 조사하였다. 전극 표면에 효소-전자전달체(Lac-(PVI-Os-dCl))의 층수가 증가할수록 전극에서 발생되는 환원 전류량이 증가하였다. 탄소나노튜브가 첨가된 효소-전자전달체 복합체 전극(Lac-SWCNTs-(PVI-Os-dCl))이 Lac-(PVI-Os-dCl) 전극에 비하여 1.7배 많은 환원 전류를 생성하였다. Lac-SWCNTs-(PVI-Os-dCl)과 Lac-(PVI-Os-dCl)의 비율을 변화시키며 적층한 전극들에서 2층의 Lac-(PVI-Os-dCl)과 2층의 Lac-SWCNTs-(PVI-Os-dCl)으로 구성된 전극이 가장 많은 양의 환원 전류(10.1±0.1 µA)를 생성하였다. 단일 층의 Lac-(PVI-Os-dCl)로 구성된 cathode를 사용하는 셀과 최적화된 cathode를 사용하는 셀의 최대 생산 전력밀도는 각각 0.46±0.05와 1.23±0.04 µW/cm2였다. 본 연구 결과는 전극 표면에 laccase, 전자전달체 및 탄소나노튜브로 구성된 복합체의 적층 최적화를 통해 cathode 및 이를 이용하는 효소 연료전지의 성능을 향상시킬 수 있음을 시사한다.

The performance of enzymatic fuel cells that convert chemical energy contained in various organic molecules such as sugar, alcohol, organic acids, and amino acids into electrical energy is greatly affected by the cathode as well as the anode. This study aimed to develop a laccase-based cathode with high performance. An enzyme composite composed of an laccase, redox mediator, and carbon nanotubes was immobilized on the surface of electrode in multiple layers, and the effect of the number of layers and the presence or absence of carbon nanotubes on electrode performance was investigated. As the number of layers of the enzyme-mediator (Lac-(PVI-Os-dCl)) on the electrode surface increased, the amount of reduction current generated at the electrode increased. The enzyme-carbon nanotube-mediator composite electrode (Lac-SWCNTs-(PVI-Os-dCl)) generated a current 1.7 times greater than that of the Lac-(PVI-Os-dCl). It was found that the largest amount of current (10.1±0.1 µA) was generated in the electrode composed of two layers of Lac-(PVI-Os-dCl) and two layers of Lac-SWCNTs-(PVI-Os-dCl) in the evaluation of electrodes with different ratio of Lac-SWCNTs-(PVI-Os-dCl) and Lac-(PVI-Os-dCl). The maximum power density of the cell using the cathode composed of a single layer of Lac-(PVI-Os-dCl) and the cell using the optimized cathode were 0.46±0.05 and 1.23±0.04 µW/cm2, respectively. In this study, it was demonstrated that the performance of cathode and the enzymatic fuel cell using the same can be improved by optimizing the layers of composites composed of laccase, redox mediator, and carbon nanotubes on the electrode surface.

키워드

과제정보

이 성과는 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2020R1F1A1054433, 2017R1D1A1B03029032).

참고문헌

  1. Martinez-Ortiz, J., Flores, R. and Vazquez-Duhalt, R., "Molecular Design of Laccase Cathode for Direct Electron Transfer in a Biofuel Cell," Biosens. Bioelectron., 26, 2626-2631(2011). https://doi.org/10.1016/j.bios.2010.11.022
  2. Xiao, X., Xia, H., Wu, R., Bai, L., Yan, L., Magner, E., Cosnier, S., Lojou, E., Zhu, Z. and Liu, A., "Tackling the Challenges of Enzymatic (Bio)Fuel Cells," Chem. Rev., 119, 9509-9558(2019). https://doi.org/10.1021/acs.chemrev.9b00115
  3. Zhao, C., Gai, P., Song, R., Chen, Y., Zhang, J. and Zhu, J., "Nanostructured Material-Based Biofuel Cells: Recent Advances and Future Prospects," Chem. Soc. Rev., 46, 1545-1546(2017). https://doi.org/10.1039/c6cs00044d
  4. Kadam, A. A., Saratale, G. D., Ghodake, G. S., Saratale, R. G., Shahzad, A., Magotra, V. K., Kumar, M., Palem, R. R. and Sung, J., "Recent Advances in the Development of Laccase-Based Biosnesors via Nano-Immobilization Technique," Chemosensors, 10, 58(2022).
  5. Yu, S. and Myung, N. V., "Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel cells," Front. Chem, 8, 620153(2021).
  6. Hussein, L., Rubenwolf, S., Stetten, F. V., Urban, G., Zengerie, R., Kruger, M. and Kerzenmacher, S., "A Highly Efficient Buckypaper-Based Electrode Material for Mediatorless Laccase-Catalyzed Dioxygen Reduction," Biosens. Bioelectron., 26, 4133-4138(2011). https://doi.org/10.1016/j.bios.2011.04.008
  7. Gentil, S., Pailley, P. R., Sancho, F. Robert, V., Mekmouche, Y., Guallar, V., Tron, T. and Goff, A. L., "Efficiency of Site-Specific Clicked Laccase-Carbon Nanotubes Biocathodes Towards O2 Reduction," Chemistry, 26, 4798-4804(2020). https://doi.org/10.1002/chem.201905234
  8. Gu, Y., Yuan, L., Jia, L., Xue, P. and Yao, H., "Recent Developments of a Co-Immobilized Laccase-Mediator System: A Review," RSC Adv., 11, 29498-29506(2021). https://doi.org/10.1039/D1RA05104K
  9. Scodeller, P., Carballo, R., Szamocki, R., Levin, L., Forchiassin, F. and Calvo, E. J., "Layer-by-Layer Self-Assembled Osmium Polymer-Mediated Laccase Oxygen Cathodes for Biofuel Cells: The Role of Hydrogen Peroxide," J. AM. Chem. Soc., 132, 11132-11140(2010). https://doi.org/10.1021/ja1020487
  10. Szamocki, R., Flexer, V., Levin, L., Forchiasin, F. and Calvo, E. J., "Oxygen Cathode Based on a Layer-by-Layer Self-Assembled Laccase and Osmium Redox Mediator," Electrochim. Acta, 132, 11132-11140(2010).
  11. Wang, X., Zhang, Y. Q., Kim, H.-K. and Kim, C.-J., "Separate Immobilization of Glucose Oxidase and Trehalase, and Optimization of Enzyme-Carbon Nanotube Layers for the Anode of Enzymatic Fuel Cells Utilizing Trehalose," Electrochim. Acta, 392, 138974(2021).
  12. Wang, X., Kim, J. H., Khang, D., Kim, H.-K. and Kim, C.-J., "Fabrication of Optimally Configured Layers of SWCNTs, Gold Nanoparticles, and Glucose Oxidase on ITO Electrodes for HighPower Enzymatic Biofuel Cells," Korean J. Chem. Eng., 36, 1172-1183(2019). https://doi.org/10.1007/s11814-019-0278-y
  13. Mishra, A., Bhatt, R., Bajpai, J. and Bajpai, A. K., "Nanomaterials Based Biofuel Cells: A Review," Int. J. Hydrog. Energy, 46, 19085-19105(2021). https://doi.org/10.1016/j.ijhydene.2021.03.024
  14. Shin, H. and Kang, C., "Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode," Bull. Korean Chem. Soc., 31, 3118-3122(2010). https://doi.org/10.5012/bkcs.2010.31.11.3118
  15. Zhao, W., Xu, J.-J. and Chen, H.-Y., "Multilayer Membrane via Layer-by-Layer Deposition of Organic Polymer Protected Prussian Blue Nanoparticles and Glucose Oxidase for Glucose Biosensing," Langmuir, 21, 9630-9634(2005). https://doi.org/10.1021/la051370+
  16. Lalaoui, N., David, R., Jamet, H., Holzinger, M., Goff, A. L. and Cosnier, S., "Hosting Adamantane in the Substrate Pocket of Laccase: Direct Bioelectrocatalytic Reduction of O2 on Functionalized Carbon nanotubes," ACS Catal., 6, 4259-4264(2016). https://doi.org/10.1021/acscatal.6b00797
  17. Joshi, P. P., Merchant, S. A., Wang, Y. and Schmidtke, D. W., "Amperometric Biosensors Based on Redox Polymer-CarbonNanotube-Enzyme Composites," Anal. Chem., 77, 3183-3188(2005). https://doi.org/10.1021/ac0484169
  18. Ding, S.-N., Holzinger, M., Mousty, C. and Cosnier, S., "Laccase Electrodes Based on the Combination of Single-Walled Carbon Nanotubes and Redox layered Double Hydroxides: Toward the Development of Biocathode for Biofuel Cells," J. Power Sources, 195, 4714-4717(2010). https://doi.org/10.1016/j.jpowsour.2010.02.033
  19. Wang, Y., Joshi, P. P., Hobbs, K. L., Johnson, M. B. and Schmidtke, D. W., "Nanostructured Biosensors Built by Layer-by-Layer Electrostatic Assembly of Enzyme-Coated Single-Walled Carbon Nanotubes and Redox Polymers," Langmuir, 22, 9776-9783(2006). https://doi.org/10.1021/la060857v
  20. Shin, H. and Kang, C., "Enhanced Performance of the WiredBilirubin Oxidase Oxygen Cathode with Incorporation of Carboxylated Single-Walled Carbon Nanotubes," Electrochim. Acta, 115, 599-606(2014). https://doi.org/10.1016/j.electacta.2013.10.213
  21. Osman, M. H., Shah, A. A. and Walsh, F. C., "Recent Progress and Continuing Challenges in Bio-fuel Cells. Part I: Enzymatic Cells," Biosens. Bioelectron, 26, 3087-3102(2011). https://doi.org/10.1016/j.bios.2011.01.004