• 제목/요약/키워드: Energy Dissipation Area

검색결과 109건 처리시간 0.027초

A Piezoelectric Energy Harvester with High Efficiency and Low Circuit Complexity

  • Do, Xuan-Dien;Nguyen, Huy-Hieu;Han, Seok-Kyun;Ha, Dong Sam;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권3호
    • /
    • pp.319-325
    • /
    • 2015
  • This paper presents an efficient vibration energy harvester with a piezoelectric (PE) cantilever. The proposed PE energy harvester increases the efficiency through minimization of hardware complexity and hence reduction of power dissipation of the circuit. Two key features of the proposed energy harvester are (i) incorporation synchronized switches with a simple control circuit, and (ii) a feed-forward buck converter with a simple control circuit. The chip was fabricated in $0.18{\mu}m$ CMOS processing technology, and the measured results indicate that the proposed rectifier achieves the efficiency of 77%. The core area of the chip is 0.2 mm2.

Development of miniature bar-type structural fuses with cold formed bolted connections

  • Guan, Dongzhi;Yang, Sen;Jia, Liang-Jiu;Guo, Zhengxing
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.53-73
    • /
    • 2020
  • A novel all-steel miniature bar-type structural fuse (MBSF) with cold formed bolted connections is developed in this study, which consists of a central energy dissipation core cut from a smooth round bar, an external confining tube and nuts. Three types of cross sections for the central energy dissipation core, i.e., triple-cut, double-cut and single-cut cross sections, were studied. Totally 18 specimens were axially tested under either symmetric or asymmetric cyclic loading histories, where the parameters such as cut cross sectional area ratio, length of the yielding portion and cross sectional type were investigated. Numerical simulation of 2 representative specimens were also conducted. An analytical model to evaluate the bending failure at the elastic portion was proposed, and a design method to avoid this failure mode was also presented. The experimental results show that the proposed MBSFs exhibit satisfactory hysteretic performance under both the two cyclic loading histories. Average strain values of 8% and 4% are found to be respectively suitable for designing the new MBSFs as the ultimate strain under the symmetric and asymmetric cyclic loadings.

통신기지국용 하이브리드 냉방기의 성능특성 연구 (Performance Characteristics of a Hybrid Air-Conditioner for Telecommunication Equipment Rooms)

  • 김용찬;최종민;강훈;윤준상;김영배;최광민;이호성
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.874-880
    • /
    • 2006
  • The power density and heat dissipation rate per unit area of the telecommunication equipment have been increased with the technology development in the footprint of telecommunication hardware. A proper heat dissipation method from the PCB module is very important to allow reliable operation of its electronic component. In this study, a hybrid air-conditioner for the telecommunication equipment room was designed to save energy and obtain system reliability. For high outdoor temperatures, the hybrid system operates in the vapor compression cycle, while, for low outdoor temperatures, the hybrid system works in the secondary fluid cooling cycle with no operation of the compressor. The performance of the hybrid air-conditioner was measured by varying outdoor and indoor temperatures. The hybrid air-conditioner yielded 50% energy saving compared with the conventional refrigeration system when the mode switch temperature was $8.3^{\circ}C$.

Study on seismic performance of SRC special-shaped columns with different loading angles

  • Qu, Pengfei;Liu, Zuqiang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.789-801
    • /
    • 2022
  • In order to study the influence of loading angles on seismic performance of steel reinforced concrete (SRC) special-shaped columns, cyclic loading tests and finite element analysis (FEA) were both carried out. Seven SRC special-shaped columns, including two L-shaped columns, three T-shaped columns and two cross-shaped columns, were tested, and the failure patterns of the columns with different loading angles were obtained. Based on the tests, the FEA models of SRC special-shaped columns with different loading angles were established. According to the simulation results, hysteretic curves and seismic performance indexes, including bearing capacity, ductility, stiffness and energy dissipation capacity, were analyzed in detail. The results showed that the failure patterns were different for the columns with the same section and different loading angles. With the increasing of loading angles, the hysteretic curves became fuller and the bearing capacity and initial stiffness appeared increasing tendency, but the energy dissipation capacity changed insignificantly. When the loading angle changed, the ductility got better with the larger area of steel at the failure side for the unsymmetrical section and near the neutral axis for the symmetrical section, respectively.

30W급 LED 투광등 설치각도에 따른 히트싱크 온도분포에 관한 연구 (A Study on Heatsink Temperature Distribution according to the Installation Angle of a 30W LED Floodlight)

  • 이영호;이중섭;정한식
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.24-30
    • /
    • 2019
  • This study investigated the heat dissipation characteristics of a heat-sensitive LED. The results of the empirical test showed that the best temperature intensification was found at 90 with 15-fins, and the heatsink installed perpendicular to the direction of the flow of air was directly connected to the air in the largest heat shield area, leading to the best cooling, and the number of fin also resulted increase in the heat discharge area, resulting in the largest cooling action with 15 fins. It was found that the rate of air flow changed in the range of 1.5m/s to 2.5m/s, but only by a deviation of about $2^{\circ}C$ to $3^{\circ}C$ from the current state of 15 fins at 2.5m/s, and the rate of air flow increased, but the performance of the heat release was not significantly increased. As a result wind speed with minimum air flow conditions of 1.5m/s can greatly contribute to the heat dissipation performance.

반복하중시 철근 마디높이에 따른 부착 손상특성 (Effects of Bar Deformation Height on Bond Degradation Subject to Cyclic loading)

  • 이재열;김병국;홍기섭;최완철
    • 콘크리트학회논문집
    • /
    • 제15권1호
    • /
    • pp.17-24
    • /
    • 2003
  • 지진하중을 받는 철근콘크리트구조의 취성파괴의 원인은 철근과 콘크리트사이의 급속한 부착손상에 의해 발생되는 국부 부착-슬립이다. 본 연구는 반복하중하에서 부착손상에 대한 철근의 마디높이의 효과를 평가하는 것이다. 큰 상대마디면적을 가진 가공된 철근을 사용하여 부착 시험체를 제작하였다. 또 다른 변수로서 연직방향 철근에 의해 횡구속 철근량의 정도가 고려되었다. 실험결과로부터 에너지 소산력의 크기가 산정되고 여러 변수들에 대해서 비교되었다. 실험결과로서, 하중의 반복이 증가함에 따라 부착강도와 부착강성은 현저히 감소함을 알 수 있다. 횡구속량이 크고 상대마디면적이 큰 철근에서 단조하중시에 비해서 반복하중시의 부착강도의 감소가 줄어들고 국부부착저하를 지연시키는데 효과가 있음을 알 수 있다. 에너지 소산량 또한 횡구속량과 마디상대면적이 증가함에 따라 증가한다. 그러나, 마디가 매우 높은 철근의 부착실험에서 높은 강성 때문에 부착이 적은 슬립에서 손상을 입는다는 것을 알 수 있다. 본 연구는 반복하중하에서 부착저하기구를 이해하고 높은 상대마디면적을 가진 새로운 이형철근의 개발에 유용할 것이다.

변형된 셋업 단계를 이용한 클러스터 헤드 선출 프로토콜 (Cluster Head Selection Protocol Using Modified Setup Phase)

  • 김진수;최성용;한승진;최준혁;임기욱;이정현
    • 한국콘텐츠학회논문지
    • /
    • 제9권1호
    • /
    • pp.167-176
    • /
    • 2009
  • 기존의 클러스터 라우팅 방식은 클러스터 헤드를 선출하여 클러스터 내의 멤버 노드들로부터 정보를 수집하고 압축하여 기지국에 전송함으로써 에너지 효율을 높일 수 있는 대표적인 방식이다. 그러나 클러스터 형성 단계 중 매 라운드마다 셋업 단계에서 선출된 클러스터 헤드와 클러스터 내의 멤버 노드들 간의 빈번한 정보 교환으로 인해 발생하는 불필요한 에너지 소모는 클러스터 라우팅 방식이 해결해야 하는 과제이다. 본 논문에서는 셋업 단계에서의 선출된 클러스터 헤드와 기존의 클러스터 헤드 사이에 변경되지 않는 중첩된 영역에 속한 멤버 노드들을 계산함으로써, 중첩된 멤버 노드들의 셋업 단계에서의 불필요한 송수신 횟수를 줄여 정보 교환을 최소화하였다. 따라서 셋업 단계에서의 소모되는 에너지를 절약하여 안정 단계에서 효율적으로 사용함으로써, 에너지의 효율적인 사용과 전체적인 네트워크의 생존시간을 증가시키고자 하며, 전체 네트워크내의 멤버들에게 클러스터 헤드가 될 수 있는 균등한 기회를 주고자 하는클러스터 헤드 선출 프로토콜을 제안한다.

감쇠판에 의한 원기둥의 상하운동 저감 모형시험 (Model Test for Heave Motion Reduction of a Circular Cylinder by a Damping Plate)

  • 고혁준;김정록;조일형
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.76-82
    • /
    • 2013
  • Motion reduction of an offshore structure at resonant frequency is essential for avoiding critical damage to the topside and mooring system. A damping plate has a distinct advantage in reducing the motion of a floating structure by increasing the added mass and the damping coefficient. In this study, the heave motion responses of a circular cylinder with an impermeable and a permeable damping plate attached at the bottom of the cylinder were investigated thru a model test. The viscous damping coefficients for various combinations of porosity were obtained from a free-decay test by determining the ratio between any pair of successive amplitudes. Maximum energy dissipation occurred at a porous plate with a porosity P = 0.1008. Experimental results for regular and irregular waves were compared with an analytical solution by Cho (2011). The measured heave RAO and spectrum reasonably followed the trends of the predicted values. A significant motion reduction at resonant frequency was pronounced and the heaving-motion energy calculated by the integration of the area under the heave motion spectrum was reduced by more than 75% by the damping plate. However, additional energy dissipation by eddies of strong vorticity and flow separation inside a porous damping plate was not found in the present experiments.

Density Aware Energy Efficient Clustering Protocol for Normally Distributed Sensor Networks

  • Su, Xin;Choi, Dong-Min;Moh, Sang-Man;Chung, Il-Yong
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.911-923
    • /
    • 2010
  • In wireless sensor networks (WSNs), cluster based data routing protocols have the advantages of reducing energy consumption and link maintenance cost. Unfortunately, most of clustering protocols have been designed for uniformly distributed sensor networks. However, some urgent situations do not allow thousands of sensor nodes being deployed uniformly. For example, air vehicles or balloons may take the responsibility for deploying sensor nodes hence leading a normally distributed topology. In order to improve energy efficiency in such sensor networks, in this paper, we propose a new cluster formation algorithm named DAEEC (Density Aware Energy-Efficient Clustering). In this algorithm, we define two kinds of clusters: Low Density (LD) clusters and High Density (HD) clusters. They are determined by the number of nodes participated in one cluster. During the data routing period, the HD clusters help the neighbor LD clusters to forward the sensed data to the central base station. Thus, DAEEC can distribute the energy dissipation evenly among all sensor nodes by considering the deployment density to improve network lifetime and average energy savings. Moreover, because the HD clusters are densely deployed they can work in a manner of our former algorithm EEVAR (Energy Efficient Variable Area Routing Protocol) to save energy. According to the performance analysis result, DAEEC outperforms the conventional data routing schemes in terms of energy consumption and network lifetime.

Study of stability and evolution indexes of gobs under unloading effect in the deep mines

  • Fu, Jianxin;Song, Wei-Dong;Tan, Yu-Ye
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.439-451
    • /
    • 2018
  • The stress path characteristics of surrounding rock in the formation of gob were analysed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analysing the instability of deep gob was established based on the mechanism of stress relief in deep mining. The energy evolution law was investigated by introducing the local energy release rate index (LERR), and the energy criterion of instability of surrounding rock was established based on the cusp catastrophe theory. The results showed that the evolution equation of the local energy release energy of the surrounding rock was quartic function with one unknown and the release rate increased gradually during the mining. The calculation results showed that the gob was stable. The LERR per unit volume of the bottom structure was relatively smaller, which mean the stability was better. The LERR distribution showed that there was main energy release in the horizontal direction and energy concentration in the vertical direction which meet the characteristics of deep mining. In summary, this model could effectively calculate the stability of surrounding rock in the formation of gob. The LERR could reflect the dynamic process of energy release, transfer and dissipation which provided an important reference for the study of the stability of deep mined out area.