• Title/Summary/Keyword: Energy Detector

Search Result 903, Processing Time 0.03 seconds

Design of the Low Energy Electron Detector for DITSAT-B

  • Park, Young-Wan-;Min, Kyoung-Wook
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.10a
    • /
    • pp.22-22
    • /
    • 1993
  • We developed the low energy electron detector (LEED) for KITSAT-B which was launched on September 26, 1998. The sensor head is mounted on the top of the satellite so that it can measure the precipitating electron flux along the Magnetic field line in the auroral zone at 820 km altitude. The detector system is composed of 4 parts : the electrostatic analyzer, the spira10on detector, the discriminator / Preamplifier, and the interface to the spacecraft. The analyzer limits the access to the spiraltron only to the electrons of certain energies which are determined by the electrostatic field across the two coaxial cylindrical analyzer plates. The energy spectrum of the detector in consideration is about 100 eV to 6.7 KeV, which is swept in 1.6 seconds and divided into 16 bins. It 81so is 1.6 second reset period after each swept, We will discuss the technical features of the system as well as the future observational schedule.

  • PDF

Detector Foil Self-Shielding Correction Factors

  • Kwon, Oh-Sun;Kim, Bong-Ghi;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.197-201
    • /
    • 1996
  • In the detail reaction-rate measurements in a critical assembly using the foil activation method, the measured activations of detector foils have inevitably errors caused by detector foil self-shielding effect. If neutron flux could be approximated to Westcott flux: i.e. well thermalized Maxwellian distribution, these activations of detector foil could be corrected to represent the unperturbated flux at any detected position in the cell with using Westcott option and reaction-rate option of the lattice code, WIMS-AECL. These calculated detector material self-shielding correction factors of the tested fuel, CANFLEX provided much information about neutron spectrum of test lattice cell as well as the correction factors themselves. The results could be verified by another lattice calculations.

  • PDF

Implementation of Sound Source Location Detector (음원 위치 검출기의 구현)

  • 이종혁;김진천
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1017-1025
    • /
    • 2000
  • The human auditory system has been shown to posses remarkable abilities in the localization and tracking of sound sources. The localization is the result of processing two primary acoustics cues. These are the interaural time difference(ITD) cues and interaural intensity difference(IID) cues at the two ears. In this paper, we propose TEPILD(Time Energy Previous Integration Location Detector) model. TEPILD model is constructed with time function generator, energy function generator, previous location generator and azimuth detector. Time function generator is to process ITD and energy function generator is to process IID. Total average accuracy rate is 99.2%. These result are encouraging and show that proposed model can be applied to the sound source location detector.

  • PDF

Complexity based Sensing Strategy for Spectrum Sensing in Cognitive Radio Networks

  • Huang, Kewen;Liu, Yimin;Hong, Yuanquan;Mu, Junsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4372-4389
    • /
    • 2019
  • Spectrum sensing has attracted much attention due to its significant contribution to idle spectrum detection in Cognitive Radio Networks. However, specialized discussion is on complexity-based sensing strategy for spectrum sensing seldom considered. Motivated by this, this paper is devoted to complexity-based sensing strategy for spectrum sensing. Firstly, three efficiency functions are defined to estimate sensing efficiency of a spectrum scheme. Then a novel sensing strategy is proposed given sensing performance and computational complexity. After that, the proposed sensing strategy is extended to energy detector, Cyclostationary feature detector, covariance matrix detector and cooperative spectrum detector. The proposed sensing strategy provides a novel insight into sensing performance estimation for its consideration of both sensing capacity and sensing complexity. Simulations analyze three efficiency functions and optimal sensing strategy of energy detector, Cyclostationary feature detector and covariance matrix detector.

RHODIUM SELF-POWERED NEUTRON DETECTOR'S LIFETIME FOR KOREAN STANDARD NUCLEAR POWER PLANTS

  • YOO CHOON SUNG;KIM BYOUNG CHUL;PARK JONG-HO;FERO ARNOLD H.;ANDERSON S. L.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.605-610
    • /
    • 2005
  • A method to estimate the relative sensitivity of a self-powered rhodium detector for an upcoming cycle is developed by combining the rhodium depletion data from a nuclear design with the site measurement data. This method can be used both by nuclear power plant designers and by site staffs of Korean standard nuclear power plants for determining which rhodium detectors should be replaced during overhauls.

Feasibility of Single-Shot Dual-Energy X-ray Imaging Technique for Printed-Circuit Board Inspection (인쇄회로기판 검사를 위한 단일조사 이중에너지 엑스선 영상기법의 유용성에 관한 연구)

  • Kim, Seung Ho;Kim, Dong Woon;Kim, Daecheon;Kim, Junwoo;Park, Ji Woong;Park, Eunpyeong;Kim, Jinwoo;Kim, Ho Kyung
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • A single-shot dual-energy x-ray imaging technique has been developed using a sandwich detector by stacking two detectors, in which the front and rear detectors respectively produce relatively lower and higher x-ray energy images. Each detector layer is composed of a phosphor screen coupled with a photodiode array. The front detector layer employs a thinner phosphor screen, whereas the rear detector layer employs a thicker phosphor screen considering the quantum efficiency for x-ray photons with higher energies. We have applied the proposed method into the inspection of printed circuit boards, and obtained dual-energy images with background clutter suppressed. In addition, the single-shot dual-energy method provides sharper-edge images than the conventional radiography because of the unsharp masking effect resulting from the use of different thickness phosphors between the two detector layers. It is promising to use the single-shot dual-energy x-ray imaging for high-resolution nondestructive testing. For the reliable use of the developed method, however, more quantitative analysis is further required in comparisons with the conventional method for various types of printed circuit boards.

Effect of Sensing Time on the Spectrum Sensing Performance of Energy Detector with Verification in Cognitive Radio System (인지 무선 시스템에서 확인 과정을 가지는 에너지 검출기의 스펙트럼 센싱 성능에 센싱 시간이 미치는 영향)

  • Baek, Jun-Ho;Hwang, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.89-93
    • /
    • 2009
  • In this paper, we investigated effect of sensing time on the performance of enhanced spectrum sensing method, which is the energy detector with multiples of verification using time delay, under Suzuki channel. We assumed that SNR is 1dB, $P_{FA}=0.1$ and various mobile speed such as 3, 60, 110 km/h. The performance is investigated by simulation and compared to that of conventional energy detector.

An Enhanced Energy Detector for WRAN Systems Using Maximum-to-Mean Power Ratio

  • Zheng, Guanbo;Han, Ning;Sohn, Sung-Hwan;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.458-466
    • /
    • 2008
  • Spectrum sensing is the key challenge in implementing cognitive radio system, which enables unlicensed users to identify "white holes" in the spectrum allocated to primary users and utilize them efficiently. Recent studies have proposed three major sensing methods for WRAN systems, including matched filter, energy and feature detector. However, there are some drawbacks along with them. In this paper, we propose an enhanced energy detector that extends the ability of conventional one, which can differentiate the primary users from each other as well as the noise with different maximum-to-mean power ratio. Furthermore, a novel structure of cognitive radio detector employing the proposed algorithm is also analyzed to implement spectrum sensing. The simulation result shows that our proposed scheme performs well in the individual sensing environment and can satisfy the requirement with high detection probability.

Sun point detector for daylight system (태양광조명장치용 고정밀 태양위치 검출시스템)

  • Kim, Sun Ho;Kim, Byung Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2010
  • Finding sufficient supplies of clean energy for future is one of the society's most important challenges according to technologies. Alternative renewable energy source such as solar energy can be substituted for exceeding human energy need. The main factor affect to solar performance is a collective intensity. To enhance intensity, suitable equipment is a solar tracker. The solar tracker consists of sun point detector module, mechanical mechanism module with actuator and control system module. This paper presents sun point detector for solar tracker of daylight system. To evaluate the detecting accuracy, an experimental device is implemented. In experimental results, the accuracy of development system has under 0.11%/0.5deg.

Improved Energy Detector using Adaptive Thresholds in Cognitive Radio System (인지 무선 시스템에서 적응형 임계치를 적용한 개선된 에너지 검출기)

  • Kim, Jong-Ho;Hwang, Seung-Hoon;Oh, Min-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.949-955
    • /
    • 2008
  • In this paper, we propose the improved energy detector using adaptive thresholds in cognitive radio system, in order to compensate the weak points of the existing energy detector in the distorted communication environment. In addition, by investigating the several parameters we analyze its performance. The numerical results show the proposed method may get the performance gain, when the mobile speed is slow (3 km/h) as well as the false alarm probability is low ($P_f=10^{-1}$).