• Title/Summary/Keyword: Energy Deposition

Search Result 1,903, Processing Time 0.033 seconds

A Study on the Pulsed Laser Deposition of Diamond like Carbon Thin Films (다이아몬드상 카본박막의 펄스레이저 증착법 연구)

  • Sim, Gyeong-Seok;Lee, Sang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.403-409
    • /
    • 1999
  • We fabricated diamond like carbon (DLC) thin films using pulsed laser deposition (PLD) method. Among many deposition parameters, the effects of the deposition temperature and the laser energy density were investigated. Structural properties of the films were studied by Raman spectroscopy. The surface morphologies and cross-section imagies of the films were investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM) respctively. DLC thin films fabricated at $12 J/cm^2$ of a laser energy density and $300^{\circ}C$ of a deposition temperature showed the best quality.

  • PDF

Residence Time Effect on the Growth of ZrC by Low Pressure Chemical Vapor Deposition (저압화학기상증착법을 이용한 ZrC 성장에 잔류시간이 미치는 영향)

  • Park, Jong-Hoon;Jung, Choong-Hwan;Kim, Do-Jin;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.280-284
    • /
    • 2008
  • In order to investigate residence time effect on the growth of ZrC film, the ZrC films grew with various system total pressure (P) and total flow rate (Q) by low pressure chemical vapor deposition because residence time is function of system total pressure and total flow rate. Thermodynamic calculations predict that the decomposition of source gases ($ZrCl_4$ and $CH_4$) would be low as increasing the residence time. Thermodynamic calculations results were proved by investigating deposition rate with various residence time. Deposition rate decreased with residence time of source gas increased. Besides, depletion effect accelerated diminution of deposition rate at high residence time. On the other hands, the deposition rated was increased as decreasing the residence time because fast moving of intermediate gas species decrease the depletion effect. The crystal structure was not changed with residence time. However, the largest size of faceted grain showed up to specific residence time and the size of grain was decreased whether residence time increase or not.

Preparation and Characterization of a Layered Organic-inorganic Composite by the Electrophoretic Deposition of Plate-shaped Al2O3 Particles and Electrophoretic Resin (전기영동적층법을 통한 판상 알루미나 입자와 전기영동 수지의 배향 유무기 복합체 제조 및 물성평가)

  • Park, Hee Jeong;Lim, Hyung Mi;Choi, Sung-Churl;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • Plate-shaped inorganic particles are coated onto a stainless steel substrate by the electrophoretic deposition of a precursor slurry which includes the inorganic particles of $Al_2O_3$ and polymer resin in mixed solvents to mimic the abalone shell structure, which is a composite of plate-shaped inorganic particles and organic interlayer binding materials with a layered orientation. The process parameters of the electrophoretic deposition include the voltage, coating time, and conductivity of the substrate. In addition, the suspension parameters are the particle size, concentration, viscosity, conductivity, and stability. We prepared an organic-inorganic composite coating with a high inorganic solid content by arraying the plate-shaped $Al_2O_3$ particles and electrophoretic resin via an electrophoretic deposition method. We analyzed the effect of the slurry composition and the electrophoretic deposition process parameters on the physical, mechanical and thermal properties of the coating layer, i.e., the thickness, density, particle orientation, Young's modulus and thermogravimetric analysis results.

Study of High Speed Steel AISI M4 Powder Deposition using Direct Energy Deposition Process (DED 기술을 이용한 고속도 공구강 M4 분말 적층에 관한 연구)

  • Lee, E.M.;Shin, G.W.;Lee, K.Y.;Yoon, H.S.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.353-358
    • /
    • 2016
  • Direct energy deposition (DED) is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In recent year, it can be widely used in order to produce hard, wear resistant and/or corrosion resistant surface layers of metallic mechanical parts, such as dies and molds. For the purpose of the hardfacing to achieve high wear resistance and hardness, application of high speed steel (HSS) can be expected to improve the tool life. During the DED process using the high-carbon steel, however, defects (delamination or cracking) can be induced by rapid solidification of the molten powder. Thus, substrate preheating is generally adopted to reduce the deposition defect. While the substrate preheating ensures defect-free deposition, it is important to select the optimal preheating temperature since it also affects the microstructure evolution and mechanical properties. In this study, AISI M4 powder was deposited on the AISI 1045 substrate preheated at different temperatures (room temperature to $500^{\circ}C$). In addition, the micro-hardness distribution, cooling rates, and microstructures of the deposited layers were investigated in order to observe the influence of the substrate preheating on the mechanical and metallurgical properties.

Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts (기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석)

  • Kim, D.A.;Lee, K.K.;Ahn, D.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

The Electrical Characteristics of Chromium Oxide Film Produced by Son Beam Sputter Deposition (이온선 스퍼터 증착법에 의하여 제조된 CrOx의 전기적 특성)

  • 조남제;이규용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.518-523
    • /
    • 2002
  • The influences of ion beam energy and reactive oxygen partial pressure on the physical and crystallographic characteristics of transition metal oxide compound(CrOx) film were studied in this paper. Chromium oxide films were deposited onto a cover-glass using ion Beam Sputter Deposition(IBSD) technique according to the various processing parameters. Crystallinity and grain size of as-deposited films were analyzed using XRD analysis. Thickness and Resistivity of the films were measured by $\alpha$-step and 4-point probe measurement. According to the XRD, XPS and resistivity results, the deposited films were the cermet type films which had crystal structure including amorphous oxide(a-oxide) phase and metal Cr phase simultaneously. The increment of the ion beam energy during the deposition process led to decreasing of metal Cr grain size and the rapid change of resistivity above the critical $O_2$ partial pressure.

Fabrication of NiO buffer film on textured Ni substrate for YBCO coated conductor (Textured Ni 기판 위에 YBCO coated conductor 모재용 NiO 완충층 제조)

  • Sun, Jong-Won;Kim, Hyoung-Seop;Jung, Choon-Ghwan;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.125-129
    • /
    • 2001
  • NiO buffer layers were deposited on texture Ni tapes fur YBCO coated conductors by MOCVD(metal organic chemical vapor deposition) method, using a single solution source. Variables were deposition temperature and flow rate of $0_2$carrier gas. At higher temperatures, The NiO(111) texture was well developed, but the NiO(200) texture was developed at low temperatures. The best result was obtained at the deposition temperature of$ 470^{\circ}C$ and the gas flow rate of 200 sccm. FWHM value of $\omega$-scan fur NiO(200) of the film and $\Phi$-scan for NiO(111) of the film was $4.2^{\circ}$ and $7^{\circ}$, respectively.

  • PDF

Crystallization behavior of ITO thin films sputtered on substrates with and without heating (가열기판 및 비가열 기판에 증착한 ITO 박막의 결정화 거동)

  • Park, Ju-O;Lee, Joon-Hyung;Kim, Jeong-Joo;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.89-92
    • /
    • 2003
  • ITO thin films were deposited by RF-magnetron sputtering method and crystallization behavior of the films with and without external heating as a function of deposition time was examined. X-ray diffraction results indicated an amorphous state of the film when the deposition time is short about 10 min. When the deposition time was increased over 20 min development of crystallization of the films is observed. Because RF-sputtering transfers the high-energy to the growing film by energetic bombardment, it is believed that considerable activation energy for the crystallization of the film has transferred during deposition, which resulted in the crystallization of ITO thin films without external energy supply.

  • PDF