• Title/Summary/Keyword: Energy Cost

Search Result 4,614, Processing Time 0.035 seconds

Legal and Policy Tasks for Raising a Climate Fund in Response to a New Climate Regime (신기후체제 대응을 위한 기후기금 조성의 법·정책적 과제)

  • Ku, Ji Sun;Park, Chul Ho
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.181-195
    • /
    • 2018
  • On December 12, 2015, the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) adopted the Paris Agreement, in which several developed and developing countries all committed to participating in the reduction of greenhouse-gas (GHG) emissions. South Korea has submitted an intended nationally determined contribution (INDC) proposal with a target to cut down 37% greenhouse gas business as usual (BAU) until 2030 in preparation for the 2030 GHG BAU. Under the post-2020 regime, which will be launched from 2021 as the agreement entered into force early, it is expected that efforts to support GHG reduction and adaptation to climate change in developing countries will be accelerated with the utilization of technologies and financial resources of developed countries. South Korea has established the Basic Plan for Climate Change Response and the Basic National Roadmap for Greenhouse Gas Reductions by 2030 to promote the response to climate change at the government level. The Ministry of Science and ICT, as the National Designated Entity designated by the UNFCCC, has come up with middle and long-term strategies for climate technology cooperation. South-Korea has an abundance of energy-consuming industries to support its export-oriented industrial structure; it is thus expected that achieving the GHG reduction target will incur a considerable cost. Moreover, in order to meet the reduction target (11.3%) of the intended nationally determined contribution proposed by South Korea, it is necessary for South Korea to actively promote projects that can achieve GHG reduction achievements, and financial resources are needed as leverage to reduce risks that can occur in the early stages of projects and attract private sector investment. This paper summarizes the theoretical discussions on climate finance and conducted a comparative analysis on the status of the funds related to climate change response in the UK, Germany, Japan and Denmark. Through this, we proposed the legal and policy tasks that should be carried forward to raise public funds that can be used for creation of new industries related to climate change as well as to reduce GHG emissions in South Korea. The Climate Change Countermeasures Act, which has been proposed by the National Assembly of South-Korea, stipulates the establishment of funds but there is no additional funding except for general account. In this regard, it is also possible to take measures such as the introduction of carbon tax or the collection and use of royalties through technology research and development projects for climate change, such as Industrial Technology Innovation Promotion Act. In addition, since funds are used in various fields such as domestic greenhouse gas reduction, technology development, and overseas projects, it is necessary to establish a system in which various ministries cooperate with the operation of the fund.

Optical pulse parameter analysis of gain switched InGaAIP FP LD at 650 nm wavelegth and its characteristic in comparison with CW operation (이득스위칭을 이용한 650nm InGaAIP FP LD의 광펄스 파라메터 분석 및 CW 발진과의 특성비교)

  • 오광환;채정혜;이용탁;백운출;김덕영
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.135-142
    • /
    • 2001
  • Recently, plastic optical fiber draws a lot of attention as a new transmission medium for local area network (LAN) and home network applications. As PMMA based GI-POF (Graded Index Plastic Optical Fiber) has very low loss at about 500 nm and 650 nm wavelengths, it is very important to have a compact ultra short optical pulse source at these wavelength windows. In this paper, we have investigated detailed characteristics of gain switched laser system by using a commercially available low cost RF devices and an InGaAlP Fabry Perot semiconductor laser operating at 650 nm wavelength. The shortest optical 'pulse obtained was 33 psec with 1 GHz repetition rate. Depending on the DC bias current and the modulation frequency, the FWHM and the pulse energy of the gain switched pulses show 33.3-82.8 psec and 0.97-9.69 pI respectively. Also, the spectral bandwidths for CW and gain switched operations are 0.44 nm and 1.50 nm. We believe that these results are quite useful for high bit rate optical transmission applications with PMMA based plastic optical fibers in addition to estimate properties of ultra fast optical components and electro-optic devices. vices.

  • PDF

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

Recent Research Trends of Cryopreservation Technology Based on Microalgae Chlorophyta (미세조류 동결보존 기술 개발의 최근 연구 동향)

  • Yim, Jun-Ho;Seo, Yong Bae;Kim, Seon Min;Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.960-968
    • /
    • 2021
  • Since microalgae research started on late 18 century, they have been recognized as one of the most important bioresources used in bioindustry. Owing to the large efforts paid to industrial application of this microorganisms, their importance on food/feed and bioactive compounds has been further extending into the environmental research areas including alternative energy resources, mitigation of the carbon emission, and waste-water treatment. However, despite the importance on their industrial application, the fundamental research field related to the long-term preservation of microalgae culture has not received much attention. However, a less labor intensive and cost-efficient preservation technology enabling biologically active and stable microalgae-culture provides a key success factor in the biotechnological application. Therefore, this study investigated various cutting-edge microalgae cryopreservation technologies currently developed so far, mainly targeting Chlorophyta, which occupies the largest taxon in the classification system of microalgae. In addition, for the development of successful cryopreservation technique, the key factors such as temperature control effect and preservative effect during cryopreservation of microalgae culture were investigated. In addition, the problems with current preservation technology that is being used in Korean domestic biological resource banks and the international microalgal resource banks are described. According to our investigation, currently no standard method for long-term preservation of microalgae is available due to their various morphological and physiological characteristics. To overcome such issues, much more efforts on fundamental research area on the identification of specific biomarker used for microalgae taxonomical classification and further systemic approaches based on strain-specific cryopreservation methods needed.

A Research on the Paradigm of Interaction Based on Attributes (인터렉션 속성에 기초한 인터렉션 범식화 연구)

  • Shan, Shu Ya;Pan, Young Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.127-138
    • /
    • 2021
  • The aim of this study is to demonstrate interaction as a describable field and tries to understand interaction from the perspective of attributes, thus building a theoretical to help interactive designer understand this field by common rule, rather than waste huge time and labor cost on iteration. Since the concept of interaction language has been brought out in 2000, there are varies of related academical studies, but all with defect such as proposed theoretical models are built on a non-uniform scale, or the analyzing perspective are mainly based on researcher's personal experience and being too unobjective. The value of this study is the clustered resource of research which mainly based on academical review. It collected 21 papers researched on interaction paradigm or interaction attributes published since 2000, extracting 19 interaction attribute models which contains 174 interaction attributes. Furthermore, these 174 attributes were re-clustered based on a more unified standard scale, and the two theoretical models summarized from it are respectively focuses on interaction control and interaction experience, both of which covered 6 independent attributes. The propose of this theoretical models and the analyzation of the cluster static will contribute on further revealing of the importance of interaction attribute, or the attention interaction attribute has been paid on. Also, in this regard, the interactive designer could reasonably allocate their energy during design process, and the future potential on various direction of interaction design could be discussed.

Trends and Costs of External Electrical Bone Stimulators and Grafting Materials in Anterior Lumbar Interbody Fusion

  • D'Oro, Anthony;Buser, Zorica;Brodke, Darrel Scott;Park, Jong-Beom;Yoon, Sangwook Tim;Youssef, Jim Aimen;Meisel, Hans-Joerg;Radcliff, Kristen Emmanuel;Hsieh, Patrick;Wang, Jeffrey Chun
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.973-980
    • /
    • 2018
  • Study Design: Retrospective review. Purpose: To identify the trends in stimulator use, pair those trends with various grafting materials, and determine the influence of stimulators on the risk of revision surgery. Overview of Literature: A large number of studies has reported beneficial effects of electromagnetic energy in healing long bone fractures. However, there are few clinical studies regarding the use of electrical stimulators in spinal fusion. Methods: We used insurance billing codes to identify patients with lumbar disc degeneration who underwent anterior lumbar interbody fusion (ALIF). Comparisons between patients who did and did not receive electrical stimulators following surgery were performed using logistic regression analysis, chi-square test, and odds ratio (OR) analysis. Results: Approximately 19% of the patients (495/2,613) received external stimulators following ALIF surgery. There was a slight increase in stimulator use from 2008 to 2014 (multi-level $R^2=0.08$, single-level $R^2=0.05$). Patients who underwent multi-level procedures were more likely to receive stimulators than patients who underwent single-level procedures (p<0.05; OR, 3.72; 95% confidence interval, 3.02-4.57). Grafting options associated with most frequent stimulator use were bone marrow aspirates (BMA) plus autograft or allograft for single-level and allograft alone for multi-level procedures. In both cohorts, patients treated with bone morphogenetic proteins were least likely to receive electrical stimulators (p<0.05). Patients who received stimulation generally had higher reimbursements. Concurrent posterior lumbar fusion (PLF) (ALIF+PLF) increased the likelihood of receiving stimulators (p<0.05). Patients who received electrical stimulators had similar revision rates as those who did not receive stimulation (p>0.05), except those in the multilevel ALIF+PLF cohort, wherein the patients who underwent stimulation had higher rates of revision surgery. Conclusions: Concurrent PLF or multi-level procedures increased patients' likelihood of receiving stimulators, however, the presence of comorbidities did not. Patients who received BMA plus autograft or allograft were more likely to receive stimulation. Patients with and without bone stimulators had similar rates of revision surgery.

Characteristic of Precipitated Metal Carbonate for Carbon Dioxide Conversion Using Various Concentrations of Simulated Seawater Solution (해수 농축수 내 금속 이온 농도에 따른 이산화탄소 전환 생성물의 특성연구)

  • Choi, Eunji;Kang, Dongwoo;Yoo, Yunsung;Park, Jinwon;Huh, Il-sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.539-546
    • /
    • 2019
  • Global warming has mentioned as one of the international problems and these researches have conducted. Carbon Capture, Utilization and Storage (CCUS) technology has improved due to increasing importance of reducing emission of carbon dioxide. Among of various CCUS technologies, mineral carbonation can converted $CO_2$ into high-cost materials with low energy. Existing researches has been used ions extracted solid wastes for mineral carbonation but the procedure is complicated. However, the procedure using seawater is simple because it contained high concentration of metal cation. This research is a basic study using seawater-based wastewater for mineral carbonation. 3 M Monoethanolamine (MEA) was used as $CO_2$ absorbent. Making various concentrations of seawater solution, simulated seawater powder was used. Precipitated metal carbonate salts were produced by mixing seawater solutions and $rich-CO_2$ absorbent solution. They were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Thermogravimetric Analysis (TGA) and studied characteristic of producing precipitated metal carbonate and possibility of reusing absorbent.

The Evaluation of flexure performance of SCP modules for LNG outer tank (LNG 외조탱크 적용을 위한 SCP 모듈의 휨성능 평가)

  • Park, Jung-Jun;Park, Gi-Joon;Kim, Sung-Wook;Kim, Eon;Shin, Dongkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.447-455
    • /
    • 2019
  • When constructing LNG storage structures using the cast-in-place method in extreme areas, the construction cost and time may be increased due to the poor working environments and conditions. Therefore, demand for modular energy storage tanks is increasing. In this study, we propose using an SCP module as an alternative for lighter-weight LNG storage tanks. The purpose of this study is to evaluate the feasibility of LNG storage outer tanks by performing bending tests on the thickness of composite steel plate concrete under field conditions. The loads on specimens with thicknesses of 100 mm and 200 mm were linearly increased to the design final loads of 413 kN and 822 kN, respectively. The slope was rapidly changed, and fracture occurred. The two test conditions showed linear behavior until the steel plate yielded, and after an extreme load behavior, sudden yielding of the steel plate yield occurred in the SCP bending test according to the INCA guidelines. The results satisfied the design flexural load and showed the possibility of using the specimens in a modular LNG outer tank. However, it is necessary to evaluate the structural performance of the SCP by performing compression and shear tests in future research.

Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process (건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • Currently graphite is used as an anode active material for lithium ion battery. However, since the maximum theoretical capacity of graphite is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of next generation high capacity and high energy density lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is about 10 times higher than the maximum theoretical capacity of graphite. However, since the volume expansion rate is almost 400%, the irreversible capacity increases as the cycle progresses and the discharge capacity relative to the charge is remarkably reduced. In order to solve these problems, it is possible to control the particle size of the Si anode active material to reduce the mechanical stress and the volume change of the reaction phase, thereby improving the cycle characteristics. Therefore, in order to minimize the decrease of the charge / discharge capacity according to the volume expansion rate of the Si particles, the improvement of the cycle characteristics was carried out by pulverizing Si by a dry method with excellent processing time and cost. In this paper, Si is controlled to nano size using vibrating mill and the physicochemical and electrochemical characteristics of the material are measured according to experimental variables.

An analysis of excavation cycle time for Korean tunnels and the comparison with the Standard of Construction Estimate (국내터널 굴착 사이클타임에 대한 분석결과와 표준품셈과의 비교)

  • Kim, Yangkyun;Kim, Hyung-Mok;Lee, Sean S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.137-153
    • /
    • 2019
  • Estimating tunnel construction time and costs are the most fundamental part of a tunnel project planning, which has been generally assessed on a deterministic basis until now. In this paper, excavation cycle time was investigated for two road tunnels and one subway tunnel, and the results were compared with the Standard of Construction Estimate (SE), which is made for the estimation of construction time and cost in a design stage. The results show that the difference in cycle time between SE and actual cycle time is 50%, 7% and 31% respectively for the three tunnels, which means that SE does not reflect practical operation time. The major reasons of the difference are skilled level of tunneling workers, the change of operation sequences for more effective operations, much more complicated working atmosphere in a tunnel than the assumption of SE etc. Finally, even though the results can not be generalized since investigated tunnels are only 3, but it is thought that SE needs to be upgraded into the model able to consider quite common situations through additional tunnel investigation and studies in the future.