• Title/Summary/Keyword: Energy Consumption Rate

Search Result 1,030, Processing Time 0.028 seconds

Energy Efficient Transmission Parameters Analysis of TDMA based HR-WPAN System for Ship Environment (선박환경에서 에너지 효율성을 고려한 TDMA기반 고속 WPAN시스템의 전송파라미터 분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.769-775
    • /
    • 2009
  • This paper proposes the optimal transmission parameter selection method for an energy efficient Wireless Personal Area Network (WPAN) system which is applicable to the Maritime Telematics targeting for various ship models. Since the transmission parameter selection is an important factor for WPAN system to decide its energy efficiency, we propose an energy consumption model for ship area network (SAN) employing IEEE 802.15.3 based TDMA HR-WPAN model and analyzes the effect of transmission parameter selection on the performance of energy consumption. In particular, the main performance decision parameter of the SAN applying HR-WPAN is path loss, since it is very varied according to the material of shipbuilding such as steel (large ship), FRP (medium size ship) and compound wood (small ship). Thus, we analyzed and demonstrated that the proper transmission parameter selection among transmit power, PHY data rate and fragment size for each ship model guarantee the energy efficiency.

Energy-Performance Efficient 2-Level Data Cache Architecture for Embedded System (내장형 시스템을 위한 에너지-성능 측면에서 효율적인 2-레벨 데이터 캐쉬 구조의 설계)

  • Lee, Jong-Min;Kim, Soon-Tae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.292-303
    • /
    • 2010
  • On-chip cache memories play an important role in both performance and energy consumption points of view in resource-constrained embedded systems by filtering many off-chip memory accesses. We propose a 2-level data cache architecture with a low energy-delay product tailored for the embedded systems. The L1 data cache is small and direct-mapped, and employs a write-through policy. In contrast, the L2 data cache is set-associative and adopts a write-back policy. Consequently, the L1 data cache is accessed in one cycle and is able to provide high cache bandwidth while the L2 data cache is effective in reducing global miss rate. To reduce the penalty of high miss rate caused by the small L1 cache and power consumption of address generation, we propose an ECP(Early Cache hit Predictor) scheme. The ECP predicts if the L1 cache has the requested data using both fast address generation and L1 cache hit prediction. To reduce high energy cost of accessing the L2 data cache due to heavy write-through traffic from the write buffer laid between the two cache levels, we propose a one-way write scheme. From our simulation-based experiments using a cycle-accurate simulator and embedded benchmarks, the proposed 2-level data cache architecture shows average 3.6% and 50% improvements in overall system performance and the data cache energy consumption.

Optimum Drying Conditions of On-Farm Red Pepper Dryer (고추건조기의 최적운전조건)

  • Lee, Dong-Sun;Keum, Dong-Hyuk;Park, Noh-Hyun;Park, Mu-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.676-685
    • /
    • 1989
  • Optimal operating conditions of on-farm red pepper dryer were searched by using the simulation-optimization algorithm combining the drying and quality deterioration models of red pepper with Box's complex method. Determination of control variables such as air temperature, air recycle ratio and air flow rate was based on a criterion of minimizing energy consumption under the constrainst conditions that satisfied the specified color retention of carotenoids. As quality constraint was stricter, energy consumption increased and total drying time decreased with lower recycle ratio and higher air flow rate Product mixing during drying was found to be able to improve the energy efficiency and product quality. Currently used air flow rate was assessed to be increased for the optimal operation. Two stage drying at the fixed optimal air flow rate was proven to be useful means for further saying of energy consumption. In the optimal bistaged drying, the second stage began at about one third of the total drying time and low air temperature in the first stage Increased to a high value and air recycle ratio increased slightly in the second stage. Optimal control variable scheme could be explained by the dryer performance and the carotenoids destruction kinetics in red pepper drying.

  • PDF

Energy Performance Comparison of Electric Heater and Geothermal Source Heat Pump type Agricultural Hot Air Dryers (전기히터식 및 지열원 히트펌프식 농산물 열풍건조기의 에너지 성능 비교)

  • Yang, Won Suk;Kim, Young Il;Park, Seung Tae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2018
  • Energy performance of electric heater and geothermal source heat pump type hot air dryers are compared in this study. For set temperatures of $30^{\circ}C$, $35^{\circ}C$ and $40^{\circ}C$, radish is dried from initial mass 60 kg until it gets 5 kg, where the difference equals the amount of water removed. As set temperature is increased, drying time is shortened for both electric heater and heat pump types, however energy efficiency is decreased due to increasing electricity consumption. Moisture extraction rate(MER) of electric heater is 2.58~2.84 kg/h, and for heat pump type 2.56~2.71 kg/h, showing little difference between the two types. Specific moisture extraction rate (SMER) of electric heater is 0.94~0.96 kg/kWh, and for heat pump type 1.72~2.21 kg/kWh. SMER of heat pump type is greater by 0.78~1.25 kg/kWh than the electric heater hot air dryer, which is 1.8~2.3 times better in terms of energy efficiency.

A study of energy saving and long conservation in construction of rock store house (암반 저장창고 건설을 통한 에너지 절감과 장기보존에 대한 연구)

  • 최예환;채경희
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.210-216
    • /
    • 1998
  • The most important thing to consider in cold store design are to save cooling energy consumption and to keep goods freshly. Specially there are many efforts to save energy with cold store in Korea. A building energy simulation program should be used to optimally select a cooling system to match the criteria of cooling rate and storage rate in a given cool crop storage building and HVAC system. The low maintenance costs, high degree of safety and environmental impacts are also favouring the underground solution. There are obviously a lot of possibility for cost-effective storage of cooled or frozen goods or liquids in ground water rock.

  • PDF

Efficient Inverter Type Compressor System using the Distribution of the Air Flow Rate (공기 변화량 분포를 이용한 효율적인 인버터타입 압축기 시스템)

  • Shim, JaeRyong;Kim, Yong-Chul;Noh, Young-Bin;Jung, Hoe-kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2396-2402
    • /
    • 2015
  • Air compressor, as an essential equipment used in the factory and plant operations, accounts for around 30% of the total electricity consumption in U.S.A, thereby being proposed advanced technologies to reduce electricity consumption. When the fluctuation of the compressed airflow rate is small, the system stability is increased followed by the reduction of the electricity consumption which results in the efficient design of the energy system. In the statistical analysis, the normal distribution, log normal distribution, gamma distribution or the like are generally used to identify system characteristics. However a single distribution may not fit well the data with long tail, representing sudden air flow rate especially in extremes. In this paper, authors decouple the compressed airflow rate into two parts to present a mixture of distribution function and suggest a method to reduce the electricity consumption. This reduction stems from the fact that a general pareto distribution estimates more accurate quantile value than a gaussian distribution when an airflow rate exceeds over a large number.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

A Study on Reaction Characteristics for NOx Reduction in Flue Gas Denitrification using Plasma (플라즈마 배연탈질에서 NOx 저감에 관한 반응제 특성 연구)

  • Baek, Hyun Chang;Shin, Dae Hyun;Woo, Je Kyung;Kim, Sang Guk;Kim, Dong Chan;Park, Yeong Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2247-2254
    • /
    • 2000
  • This study was carried out to investigate the reaction characteristics of NOx with reagents to grope the power consumption rate reduction and NOx removal rate improvement for the non-thermal plasma denitrification process. The experiments were performed using the real flue gas and wire-plate type plasma reactor. and the flow rate of real flue gas is $20Nm^3/hr$. Paraffinic and olefinic hydrocarbons and ammonia were used as reagents. Olefinic hydrocarbon oxidizes NO more actively than paraffinic hydrocarbon under the non-thermal plasma conditions, resulting in the generation of large amount of $NO_2$ and a very small amount of CO. When the initial NOx concentration increases. oxidation rate of NO decreases and the consumption rate of olefinic hydrocarbon increases significantly. On the other hand. $NH_3$ did not promote reduction reaction with NO under non-thermal plasma conditions. however, there was a tendency that the NHa was effective to remove the $NO_2$ oxidized by olefinic hydrocarbon.

  • PDF

Decomposition of $SO_x, NO_x$ by Plasma Discharge (플라즈마 방전에 의한 $SO_x, NO_x$의 분해)

  • 우인성;강현춘
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.73-77
    • /
    • 1999
  • In this study, $SO_2$ and $NO_2$ reduction have been investigated by using coil type plasma reactor. The experiments have been carried out changing discharge power, gas flow rate frequency and electrode style to obtain the decomposition rate. Decomposition rates of $SO_2$ and $NO_2$ were obtained 20~98% at gas flow rate 100ml/min~1,000ml/min and discharge power 5~25w respectively. The energy efficiency is very good at the high frequency power. The decomposition rate of $SO_2$ for 5kHz power supply is only 90%, but for 10kHz power supply is very high, more than 98% for 15w. The decomposition rate is increasing according to the residence time or the power consumption of the discharge. About 15W discharge power for 17$cm^2$ reactor is necessary to obtain the decomposition rate of $SO_2$ and $NO_2$ of more than 85% or 98%. From these experiments, the consumption power of the decomposition rate of 98% in 300ppm $NO_2$ gas in nitrogen gas proved to be 18W and 300ppm $SO_2$ gas to be 15w.

  • PDF

Analysis of Building Energy Reduction Effect based on the Green Wall Planting Foundation Type Using a Simulation Program (건물일체형 패널형 벽면녹화 식재기반 유형별 건물에너지 성능 분석)

  • Kim, Jeong-Ho;Kwon, Ki-Uk;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.936-946
    • /
    • 2015
  • This study is aimed to analyze the reduction performance of building energy consumption according to planting base types of panel-type green walls which can be applied to existing buildings. The performance was compared to the general performance of green walls that have demonstrated effects of improving the thermal environment and reducing building energy consumption in urban areas. The number of planting base types was 4 in total, and simulations were conducted to analyze the thermal conductivity, thermal transmittance, and overall building energy consumption rate of each planting base type. The highest thermal conductivity by the planting base type was Case C (0.053W/mK), followed by Case B (0.1W/mK) and Case D (0.17W/mK). According to the results of energy simulation, the most significant reduction of cooling peak load per unit area was Case C (1.19%), followed by Case B (1.14%) and Case D (1.01%) when compared to Case A to which green wall was not applied; and the most significant reduction of heating peak load per unit area was estimated to be Case C (2.38%), followed by Case B (1.82%) and case D (1.50%) when compared to Case A. The amount of yearly cooling and heating energy use per unit area showed 3.04~3.22% of reduction rate. The amount of the 1st energy use showed 5,844 kWh/yr of decrease on average for other types when compared to Case A. The amount of yearly $CO_2$ emission showed 996kg of decrease on average when compared to Case A to which the green wall was not applied. According to the results of energy performance evaluation by planting location, the most efficient energy performance was eastward followed by westward, southward and northward. According to the results of energy performance evaluation by planting location by green wall ratio, it was found that as the ratio of green wall increased, the energy performance displayed better results, showing approx. double reduction rate in energy consumption at 100% of green wall ratio than the reduction rate at 20% to 80% of green wall ratio.