• Title/Summary/Keyword: Energy Consumption Prediction

Search Result 193, Processing Time 0.028 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

A Study on the Comparison of Transmission Error Prediction for a Helical Gear Pair (헬리컬기어의 전달오차예측 비교에 관한 연구)

  • Kim, Lae-sung;Zhang, Qi;Choi, Chang;Liang, Longjun;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.14-18
    • /
    • 2015
  • In recent years, world is faced with a transportation energy dilemma, and the transportation is almost dependent on a single fuel - petroleum. However, Hybrid Electric Vehicle (HEV) technology holds more advantages to reduce the demand for petroleum in the transportation by efficiency improvements of petroleum consumption. Therefore, there is a trend that lower gear noise levels are demanded in HEV for drivers to avoid annoyance and fatigue during operation. And meshing transmission error (T.E.) is the excitation that leads to the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, the analysis of gear tooth profile and lead modification is firstly presented, and then, the different transmission error of no mesh misalignment and mesh misalignment under one loaded torque for the 1st gear pair of HEV gearbox was investigated and compared. At last, the appropriate tooth modification was used to minimize and compare the transmission error of the gear pair with mesh misalignment under the loaded torque.

A Fairness and QoS Supporting MAC(FQSM) Protocol for Wireless Sensor Networks (무선 센서 네트워크에서 공평성과 QoS를 지원하는 MAC 프로토콜)

  • Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.191-197
    • /
    • 2012
  • In this paper we propose the FQSM(Fairness and QoS Supporting MAC) protocol that supports fairness and Quality of Service(QoS). The received or measured data traffics will be assigned a priority level according to its transmission urgency in the FQSM. And the load prediction algorithm is used to support the fairness between different priority traffics. For this, the buffer length values of the nodes are continuously monitored for a some period. Based on the buffer length variations for this period, the order of transmission is determined. FQSM also adapts cross-layer concept to rearrange the data transmission order in each sensor node's buffer, saves energy consumption by allowing few nodes in data transmission, and prolongs the network lifetime.

Estimation of Economics thorough Prediction of Methane Generation using IPCC Guideline from C Sanitary Landfill (IPCC가이드라인을 이용한 중소도시 C위생매립장의 메탄가스 발생량 예측을 통한 경제성 평가)

  • Lee, Sang-Woo;Park, Seo-Yun;Chang, In-Soo;Kang, Byung-Wook;Park, Sang-Chan;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.189.1-189.1
    • /
    • 2011
  • Global warming effect was intensified due to rapid growth of fossil fuel consumption caused by urbanization and industrialization. Various efforts was being done to solve the problems leading to anomaly climate such as flood, downpour, heavy snow. As a results of international efforts for management of global warming, Kyoto Protocol, which was passed in Kyoto, Japan in 1997, designated $CO_2$, $CH_4$, $N_2O$, HFCs, PFCs, $SF_6$ as a global warming gases. And IPCC(Intergovernmental Panel on Climate Change) suggested IPCC guideline for systematic establishment of national greenhouse gas inventory. Among five categories in IPCC guideline, the representative emission source of waste category is SWDS(solid waste disposal site). The concentrative research should progress for effective management of greenhouse gas related with waste. In this study, Tier1 and Tier2 methods which was suggested by 2006 IPCC(Intergovernmental Panel on Climate Change) guideline, was used to predict methane generation from C sanitary landfill located in Chungju area. To predict methane generation from C sanitary landfill, all factors were defaults values that were provided by 2006 IPCC guideline and Korea emission factors for Tier1 and Tier2 method. And economics of generated methane was estimated. From the predicted result using IPCC guideline, the methane generation was persistingly increased over a 9-year period(2000 ~ 2008). Aggregated amount of methane generation was about 3,017ton and 3,170ton predicted by Tier1 and Tier2, respectively. From the results of estimated economic value gained by generated methane from the C sanitary landfill for ten years from now(2010 ~ 2020), the profit was about 2.39 ~ 2.76 hundred million won.

  • PDF

A Performance Analysis on a Heat pump with Thermal Storage Adopting Load Response Control Method (부하 대응 제어방식을 적용한 축열식 히트펌프시스템의 성능 해석)

  • Kim, Dong Jun;Kang, Byung Ha;Chang, Young Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.130-142
    • /
    • 2018
  • We use heat pumps with thermal storage system to reduce peak usage of electric power during winters and summers. A heat pump stores thermal energy in a thermal storage tank during the night, to meet load requirements during the day. This system stabilizes the supply and demand of electric power; moreover by utilizing the inexpensive midnight electric power, thus making it cost effective. In this study, we propose a system wherein the thermal storage tank and heat pump are modeled using the TRNSYS, whereas the control simulations are performed by (i) conventional control methods (i.e., thermal storage priority method and heat pump priority method); (ii) region control method, which operates at the optimal part load ratio of the heat pump; (iii) load response control method, which minimizes operating cost responding to load; and (iv) dynamic programming method, which runs the system by following the minimum cost path. We observed that the electricity cost using the region control method, load response control approach, and dynamic programing method was lower compared to using conventional control techniques. According to the annual simulation results, the electricity cost utilizing the load response control method is 43% and 4.4% lower than those obtained by the conventional techniques. We can note that the result related to the power cost was similar to that obtained by the dynamic programming method based on the load prediction. We can, therefore, conclude that the load response control method turned out to be more advantageous when compared to the conventional techniques regarding power consumption and electricity costs.

Simulation analysis and evaluation of decontamination effect of different abrasive jet process parameters on radioactively contaminated metal

  • Lin Zhong;Jian Deng;Zhe-wen Zuo;Can-yu Huang;Bo Chen;Lin Lei;Ze-yong Lei;Jie-heng Lei;Mu Zhao;Yun-fei Hua
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3940-3955
    • /
    • 2023
  • A new method of numerical simulating prediction and decontamination effect evaluation for abrasive jet decontamination to radioactively contaminated metal is proposed. Based on the Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) coupled simulation model, the motion patterns and distribution of abrasives can be predicted, and the decontamination effect can be evaluated by image processing and recognition technology. The impact of three key parameters (impact distance, inlet pressure, abrasive mass flow rate) on the decontamination effect is revealed. Moreover, here are experiments of reliability verification to decontamination effect and numerical simulation methods that has been conducted. The results show that: 60Co and other homogeneous solid solution radioactive pollutants can be removed by abrasive jet, and the average removal rate of Co exceeds 80%. It is reliable for the proposed numerical simulation and evaluation method because of the well goodness of fit between predicted value and actual values: The predicted values and actual values of the abrasive distribution diameter are Ф57 and Ф55; the total coverage rate is 26.42% and 23.50%; the average impact velocity is 81.73 m/s and 78.00 m/s. Further analysis shows that the impact distance has a significant impact on the distribution of abrasive particles on the target surface, the coverage rate of the core area increases at first, and then decreases with the increase of the impact distance of the nozzle, which reach a maximum of 14.44% at 300 mm. It is recommended to set the impact distance around 300 mm, because at this time the core area coverage of the abrasive is the largest and the impact velocity is stable at the highest speed of 81.94 m/s. The impact of the nozzle inlet pressure on the decontamination effect mainly affects the impact kinetic energy of the abrasive and has little impact on the distribution. The greater the inlet pressure, the greater the impact kinetic energy, and the stronger the decontamination ability of the abrasive. But in return, the energy consumption is higher, too. For the decontamination of radioactively contaminated metals, it is recommended to set the inlet pressure of the nozzle at around 0.6 MPa. Because most of the Co elements can be removed under this pressure. Increasing the mass and flow of abrasives appropriately can enhance the decontamination effectiveness. The total mass of abrasives per unit decontamination area is suggested to be 50 g because the core area coverage rate of the abrasive is relatively large under this condition; and the nozzle wear extent is acceptable.

A study on the development of simulation program for the small naturally aspirated four-stroke diesel engine (소형 4행정사이클 무과급 디이젤 기관의 성능 시뮤레이션 전산프로그램의 개발에 관한 연구)

  • 백태주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.17-36
    • /
    • 1984
  • Since 1973, the competition on the development of fuel saving type internal combustion engines has become severe by the two times oil shock, and new type engines are reported every several months. Whenever these new type engines are developed, new designs are required and they will be offered in the market after performing the endurance test for a long time. But the engine market is faced with a heavy burden of finance, as the developing of a new engine requires tremendous expenses. For this reason, the computer simulation method has been lately developed to cope with it. The computer simulation method can be available to perform the reasonable research works by the theoretical analysis before carrying out practical experiments. With these processes, the developing expenses are cut down and the period of development is curtailed. The object of this study is the development of simulation computer program for the small naturally aspirated four-stroke diesel engine which is intended to product by the original design of our country. The process of simulation is firstly investigated for the ideal engine cycle, and secondly for the real engine cycle. In the ideal engine cycle, each step of the cycle is simulated by the energy balance according to the first law of thermodynamics, and then the engine performance is calculated. In the real cycle imulation program, the injection rate, the preparation rate and the combustion rate of fuel and the heat transfer through the wall of combustion chamber are considered. In this case, the injection rate is supposed as constant through the crank angle interval of injection and the combustion rate is calculated by the Whitehouse-Way equation and the heat transfer is calculated by the Annand's equation. The simulated values are compared with measured values of the YANMAR NS90(C) engine and Mitsubishi 4D30 engine, and the following conclusions are drawn. 1. The heat loss by the exhaust gas is well agree with each other in the lower load, but the measured value is greater than the calculated value in the higher load. The maximum error rate is about 15% in the full load. 2. The calculated quantity of heat transfer to the cooling water is greater than the measured value. The maximum error rate is about 11.8%. 3. The mean effective pressure, the fuel consumption, the power and the torque are well agree with each other. The maximum error is occurred in the fuel consumption, and its error rate is about 7%. From the above remarks, it may be concluded that the prediction of the engine performance is possibly by using the developed program, although the program needs to reform by adding the simulation of intake and exhaust process and assumping more reliable mechanical efficiency, volumetric efficiency, preparation rate and combustion rate.

  • PDF

The Policy Effects on Traditional Retail Markets Supported by the Korean Government (정부의 전통시장 지원 정책 효과에 대한 실증연구)

  • Lee, Kyu-Hyun;Kim, Yong-Jae
    • Journal of Distribution Science
    • /
    • v.13 no.11
    • /
    • pp.101-109
    • /
    • 2015
  • Purpose - A traditional retail market is a place that offers economic opportunity to employees and employers alike it also is a place where the community can meet. The Korean government has invested three trillion won to improve physical and non-physical aspects in traditional retail markets since 2004. However, little research on this has been conducted. We explore this research gap that could lead to theory extension. We analyze consumption behavior with respect to traditional retail markets through an empirical analysis, thus overcoming limits in previous research. We empirically analyze policy effects of traditional retail market projects supported by the Korean government. Research design, data, and methodology - We propose a traditional retail market improvement plan via the relation between cause and effect resulting from the analysis. More specifically, logit analysis was carried out with 1,754 consumers in 16 cities nationwide. In order to analyze consumer consumption behaviors nationwide, the probability was analyzed using a logit model. This research analyzes the link between support and non-support by the Korean government using binary values. The dependent variable is whether Korean government support is implemented; the binomial logistic regression is used as the statistical estimation technique. The object variables are:1 (support) or 0 (nonsupport), and the prediction value is between 1 and 0. As a result of the factor analysis of questions related to attributes of service quality, four factors were extracted: convenience, product, facilities, and service. Results - The results indicate that convenience, product, and facilities have a significant influence on consumer satisfaction in accordance with the government's traditional retail market support. Additionally, the results reveal that convenience, product, facilities, and service all have a significant influence on consumer satisfaction in a traditional retail market's service quality and consumer satisfaction. Finally, the analysis indicates that the highly satisfied traditional retail market customer has a significant influence on revisit intention. Moreover, the results reveal that the highly satisfied traditional retail market customer has a significant influence on recommendation intention. Conclusions - This research focused on consumers nationwide to measure policy effects of traditional retail markets compared to previous research that focused on one traditional retail market or a specific area. We verified the relationship of service quality and customer satisfaction and consumer behavior based on service quality theory. The results indicate that consumer satisfaction of traditional retail markets supported by service quality factors has a significant impact. In a concrete form, the results indicate that these effects are from facility modernization projects and marketing support projects of the Korean government. The results also imply that these facility and management support effects from the Korean government have been consistent. We realize that the Korean government has to selectively support traditional retail markets in major cities and small and medium-sized cities. To that end, the Korean government needs to select a concentration strategy for the revitalization of traditional retail markets.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

The Software Complexity Estimation Method in Algorithm Level by Analysis of Source code (소스코드의 분석을 통한 알고리즘 레벨에서의 소프트웨어 복잡도 측정 방법)

  • Lim, Woong;Nam, Jung-Hak;Sim, Dong-Gyu;Cho, Dae-Sung;Choi, Woong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.153-164
    • /
    • 2010
  • A program consumes energy by executing its instructions. The amount of cosumed power is mainly proportional to algorithm complexity and it can be calculated by using complexity information. Generally, the complexity of a S/W is estimated by the microprocessor simulator. But, the simulation takes long time why the simulator is a software modeled the hardware and it only provides the information about computational complexity quantitatively. In this paper, we propose a complexity estimation method of analysis of S/W on source code level and produce the complexity metric mathematically. The function-wise complexity metrics give the detailed information about the calculation-concentrated location in function. The performance of the proposed method is compared with the result of the gate-level microprocessor simulator 'SimpleScalar'. The used softwares for performance test are $4{\times}4$ integer transform, intra-prediction and motion estimation in the latest video codec, H.264/AVC. The number of executed instructions are used to estimate quantitatively and it appears about 11.6%, 9.6% and 3.5% of error respectively in contradistinction to the result of SimpleScalar.