• Title/Summary/Keyword: Energy Consumption Per Unit

Search Result 79, Processing Time 0.031 seconds

Analysis of New & Renewable Energy Application and Energy Consumption in Public Buildings (공공건축물의 신재생에너지 적용과 에너지 사용량 분석)

  • Lee, Yong-Ho;Seo, Sang-Hyun;Kim, Hyung-Jin;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.153-161
    • /
    • 2012
  • This study conducted a survey and field investigation on the application of the Public Obligation System for new & renewable energy in public buildings, as well as energy consumption of each building according to their uses. The findings are as follows: (1) Since the introduction of the Public Obligation System (until June 30, 2011), there was average 1.4 new & renewable energy facilities established at 1,433 places. Preference for solar energy facilities was the highest at 57.8%. (2) The revised act sets the obligatory supply percentage of new & renewable energy for each public building: it is 9.0% for a tax office, 4.2% for a dong office, 8.2% for a public health center, and 12.6% for a fire station. All the public buildings except for fire stations failed to meet 10% expected energy consumption, a revised standard. (3) Energy consumption of each public building was 120.6TOE for a tax office, 124.3TOE for a dong office, 166.4TOE for a public health center, and 174.6TOE for a fire station. The energy consumption was comprised of 80% electric power, 18% urban gas, and 1% oil. (4) Electric power consumption per person in the room was high at a dong office, and fuel consumption per person in the room was high at a public health center. In addition, electric power consumption per unit space was high at a public health center, and fuel consumption per unit space was high at a fire station. (5) In all the four public buildings, power load had the highest basic unit percentage at average 55%, being followed by heating load (21.2%), cooling load (15%), and water heating load (7%). A tax office and fire station had 2% load due to cooking facilities.

Analysis on Particle Cleaning Capacity of Indoor Air Cleaners for Different Flow Rates Considering Energy Consumption (에너지소비를 고려한 실내공기청정기의 풍량별 입자 청정화능력 분석)

  • Han, Bangwoo;Kang, Ji-Su;Kim, Hak-Joon;Kim, Yong-Jin;Won, Hyosig
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.139-147
    • /
    • 2013
  • The performances of indoor air cleaners including particle cleaning capacity and collection efficiency are usually tested at the condition of the maximum air flow rate of the air cleaners. However, the power consumption of the air cleaners is highly dependent on the air flow rate of the individual air cleaners. Therefore, there seems to be an optimized air flow rate for the air cleaning capacity considering power consumption. In this study, clean air delivery rate(or standard useful area as suggested room size) and power consumption have been investigated for different maximum air flow rates of 15 air cleaners and then compared those for different air flow rate modes of the individual 5 air cleaners selected from the 15 cleaners. For the maximum air flow rate conditions of 15 air cleansers, the power consumption per unit area was less related to the maximum air flow rate. However, for the different air flow rate modes of the selected 5 air cleaners, the lower power consumption per unit area was corresponding to the lower air flow rate mode of the individual air cleaners. When considering the operation time to the desired particle concentrations, there was an optimized one in the medium air flow rate modes for the individual air cleaners. Therefore, not only the maximum air flow rate but also lower air flow rates of individual air cleaners should be considered for estimating air cleaning capacity based on energy consumption per unit area.

A Study on Urban Energy Consumption Estimation on the Urban Planning Stage (도시계획단계의 에너지 수요예측 방안에 관한 연구)

  • Yeo, In-Ae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.506-510
    • /
    • 2012
  • This study suggested an improved algorithm of urban energy consumption estimation on the urban planning stage which concerns calculation accuracy. The results are as follows. (1) Urban energy consumption was estimated and managed per unit space using E-GIS DB which contains facility information per mesh. (2) Urban energy consumption was reflected by the urban facility classified and standardized by the characteristics of energy use. (3) Calculation accuracy of energy consumption was approached by separately suggested as summer algorithm reflecting urban heat island on summer energy use and winter algorithm reflecting heating system normally used in Korea.

  • PDF

An Analysis on the Characteristics of Energy and Water Consumption in Urban Rental Apartment (도심(都心) 임대(賃貸)아파트의 에너지 및 상수(上水) 소비(消費) 특성(特性) 분석(分析))

  • Seo, Youn-Kyu;Kim, Joo-Young;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.11a
    • /
    • pp.261-265
    • /
    • 2008
  • To solve the lack of housing, our country has supplied an enormous volume of apartments, and these days it occupies 75% of our buildings. As apartments occupy most of our housings, the rate of energy usage from them are also high. On this, setting apartment energy reduction as a target, by researching the actual conditions of energy consumption and drawing a basis data, we can apply this as a way of saving energy, rationalization of the scale of energy supply facilities and a standard when planning facilities. To grasp the present condition of energy usage of the urban rental apartment, this research analysed the use of electricity, gas and water monthly and annually of a rental apartment that is located in Daegu. The results showed that in 2003 the electricity usage was 1,198MWh but 1,315MWh in 2007, which means 9% of electricity usage increases every year. The average of water usage was $85,072m^2$ per year and they used $604.2MJ/m^2$ Typical energy consumption unit on $74.4m^2$ of area and $448.8MJ/m^2$ on $105.8m^2$. By showing the usage of energy and water of the urban rental apartment, understanding the tendency and preparing an Typical energy consumption unit standard through this research, apartments should use energy more efficiently.

  • PDF

An Analysis on the Characteristics of Energy and Water Consumption in Urban Rental Apartment (도심 임대아파트의 에너지 및 상수 소비 특성에 관한 연구)

  • Seo, Youn-Kyu;Kim, Ju-Young;Hong, Won-Hwa
    • Journal of the Korean housing association
    • /
    • v.20 no.6
    • /
    • pp.39-46
    • /
    • 2009
  • It has been a serious problem to consume the energy of apartment while increasing to use of heating & cooling System because of residence environmental upgrades. Great attention has been shown to the problem of the rental apartment, so there are few reports of energy consumption about the rental apartment in korea. To solve the lack of housing, our country has supplied an enormous volume of apartments, and these days it occupies 75% of our buildings. As apartments occupy most of our housings, the rate of energy usage from them are also high. On this, setting apartment energy reduction as a target, by researching the actual conditions of energy consumption and drawing a basis data, we can apply this as a way of saving energy, rationalization of the scale of energy supply facilities and a standard when planning facilities. To grasp the present condition of energy usage of the urban rental apartment, this research analysed the use of electricity, gas and water monthly and annually of a rental apartment that is located in Daegu. The results showed that in 2003 the electricity usage was 1,198MWh but 1,315MWh in 2007, which means 9% of electricity usage increases every year. The average of water usage was $85,072\;m^2$ per year and typical energy consumption unit was $604.2\;MJ/m^2$ on $74.4\;m^2$ of area and $448.8\;MJ/m^2$ on $105.8\;M^2$. By showing the usage of energy and water of the urban rental apartment, understanding the tendency and preparing an typical energy consumption unit standard through this research, apartments should use energy more efficiently.

Energy Consumption Characteristics and Policy Directions According to Apartment Complex Type in Incheon Metropolitan City (초고층과 일반 아파트 단지의 에너지 소비 특성과 정책방향 연구 - 인천지역 아파트 단지의 전기 및 가스 사용량을 중심으로)

  • Rhee, Bum-Hun;Chang, Dong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.285-290
    • /
    • 2019
  • This study aims to compare the energy consumption characteristics of high-rise and general apartments and propose policy implications in Incheon City where high-rise apartments are planned. The method of analysis is to select the cases, to conduct field survey, drawing review, analysis of Electric Architectural administration Information System. The study derived the current status of energy consumption in high-rise and general apartment complexes located in the same region, Yeonsu-gu Incheon City, and performed comparative analysis on their characteristics. First, electrical energy in the high-rise apartment complexes was consumed excessively, by 1.63 to 2.5 times more than that of the general apartment complexes. Second, the gas energy usage in the high-rise apartment complexes was higher than that of the general complexes, by 1.09 to 1.2 times. Third, the energy consumption per unit area in the high-rises was also higher, by 1.042 to 1.3 times. As individual elements such as incomes, living standards, and life patterns of the residents affect energy consumption, the high-rise apartment complex consumed more energy per unit area than the general apartment complex did. However, this study did not consider the elements of energy expenditure and satisfaction level, which are the limitations of this research.

A Study on the Evaluation of Water Consumption in Electric Appliances using Water Footprint - Focusing on Washing Machine - (Water Footprint 개념을 이용한 가전제품의 수자원 사용량 산정 (세탁기를 중심으로))

  • Jo, Hyun-Jung;Kim, Woo-Ram;Park, Ji-Hyoung;Hwang, Young-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, by using the Water footprint technique, the water consumption by washing machines, which holds higher ranks in using water than any other electric appliances, was analyzed during their life cycle. The life cycle is defined as raw materials production step, manufacturing step, and using step. In raw materials production step, Input materials were researched by using LCI DB(Life Cycle Inventory Database) and the water consumption was calculated with consideration of approximately 65% Input materials which were based weight. In manufacturing step, the water consumption was calculated by the amount of energy used in assembly factories and components subcontractors and emission factor of energy. In using step, referring to guidelines on carbon footprint labeling, the life cycle is applied as 5 years for a washing machine and 218 cycles for annual bounds of usage. The water and power consumption for operating was calculated by referring to posted materials on the manufacture's websites. The water consumption by nation unit was calculated with the result of water consumption by a unit of washing machine. As a result, it shows that water consumption per life cycle s 110,105 kg/unit. The water consumption of each step is 90,495 kg/unit for using, 18,603 kg for raw materials production and 1,006 kg/unit for manufacturing, which apparently shows that the using step consume the most water resource. The water consumption by nation unit is 371,269,584tons in total based on 2006, 83,385,649 tons in both steps of raw material production and manufacturing, and 287,883,935 tons in using step.

Measurement and Analysis of Energy Consumption of HVAC Equipment of a Research Building (연구용 건물의 열원 및 공조기기의 에너지 소비량 측정 및 분석)

  • Kim Seong-Sil;Kim Youngil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.914-922
    • /
    • 2004
  • In this study, measurement and analysis of energy consumption of a research building have been conducted. The energy audit procedure includes monitoring of electricity and LNG consumption over a period of three yews from 2000 to 2002. Data acquisition system for collecting energy consumption data of HVAC equipment such as chillers, fan filter units, AHUs, cooling towers, boilers, pumps, fan coil units, air compressors and etc. has been installed in a building located in Seoul. Data collected at an interval of 1 minute are analyzed for studying the energy consumption pattern of a research building. Percentage of energy consumption of all HVAC equipment is $51.0\%$ in 2000, $55.4\%$ in 2001, and $62.3\%$ in 2002, respectively. Electricity consumption of chillers accounts for $17.6\%$ of the total energy consumption, which is the largest. Annual energy consumption-rate per unit area is $840.5Mcal/m^2{\cdot}y$ in 2000, $1,064.8Mcal/m^2{\cdot}y$ in 2001, and $1,393.0Mcal/m^2{\cdot}y$ year 2002, respectively.

An Analysis of Energy Consumption and GHG Emission per Unit of Rail and Road Transportation (철도와 도로 수송부문의 에너지 소비 및 온실가스 배출 원단위 분석)

  • Kim, Byung-Kwan;Lee, Jin-Sun;Kim, Hyoun-Ku;Lee, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • In general, the rail transportation recognized as a better transportation mode than road transportation in terms of the environment. However, due to a lack of quantitative analysis based on Korean data, foreign cases for environmental advantages of the railway have often been cited in Korea. To address this issue, we estimated the energy consumption of passenger and freight transportation using certified activity data from Korea Railroad Statistics and the Electrical Work Report for railway and the Energy Consumption Survey for road. We estimated the Green House Gas emission of passenger and freight transportation on a Tier 1 level by applying the IPCC 2006 Guideline. Finally, we calculated the energy consumption unit and GHG emission unit to determine the environmental impact of rail and road transportation. We also compared the analyzed results of high-speed rail and auto as typical means of rail and road transportation.

A Study of GHG-AP Integrated Inventories and Alternative Energy Use Scenario of Energy Consumption in the University (대학 내 에너지 소비에 따른 온실가스-대기오염 통합 인벤토리 및 대체 에너지 사용 시나리오 분석)

  • Jung, Jae-Hyung;Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1643-1654
    • /
    • 2014
  • The university is one of the main energy consumption facilities and thereby releases a large amount of greenhouse gas (GHG). Accordingly, efforts for reducing energy consumption and GHG have been established in many local as well as international universities. However, it has been limited to energy consumption and GHG, and has not included air pollution (AP). Therefore, we estimated GHG and AP integrated emissions from the energy consumed by Seoul National University of Science and Technology during the years between 2010 and 2012. In addition, the effect of alternative energy use scenario was analysed. We estimated GHG using IPCC guideline and Guidelines for Local Government Greenhouse Inventories, and AP using APEMEP/EEA Emission Inventory Guidebook 2013 and Air Pollutants Calculation Manual. The estimated annual average GHG emission was $11,420tonCO_{2eq}$, of which 27% was direct emissions from fuel combustion sectors, including stationary and mobile source, and the remaining 73% was indirect emissions from purchased electricity and purchased water supply. The estimated annual average AP emission was 7,757 kgAP, of which the total amount was from direct emissions only. The annual GHG emissions from city gas and purchased electricity usage per unit area ($m^2$) of the university buildings were estimated as $15.4kgCO_{2eq}/m^2$ and $42.4tonCO_{2eq}/m^2$ and those per person enrolled in the university were $210kgCO_{2eq}$/capita and $577kgCO_{2eq}$/capita. Alternative energy use scenarios revealed that the use of all alternative energy sources including solar energy, electric car and rain water reuse applicable to the university could reduce as much as 9.4% of the annual GHG and 34% of AP integrated emissions, saving approximately 400 million won per year, corresponding to 14% of the university energy budget.