• Title/Summary/Keyword: Energy Consumption Parameter

Search Result 106, Processing Time 0.031 seconds

Analysis on the Impact of Load Factors in Building Energy Simulation Affecting Building Energy Consumption (에너지시뮬레이션에서의 부하요소가 건물에너지사용량에 미치는 영향 분석)

  • Yoon, Kap-Chun;Jeon, Jong-Ug;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.71-78
    • /
    • 2011
  • The goal of this study is to analyze the impact of load factors on building energy consumption by using EnergyPlus program. We selected a campus building and monitored energy consumption from January 2009 to November 2010. First, we simulated energy consumption basically with weather data, building heat gain and EHP performance data. And then we simulated energy consumption with three additional parameter(infiltration, OA control and schedule). Simulation results are verified by MBE and Cv(RMSE) proposed by M&V guideline 3.0. Simulated total energy consumption was 104.3% of measurements, 4.33% of MBE, and 13.62% of Cv(RMSE). Results show infiltration and schedule were revealed as the most dominant factor of heating energy consumption and of cooling energy consumption, respectively.

Equivalent Consumption Minimization Strategy of Fuel Cell Hybrid Vehicles (연료전지 하이브리드 자동차의 ECMS)

  • Zheng, Chun-Hua;Park, Yeong-Il;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.46-51
    • /
    • 2012
  • Fuel Cell Hybrid Vehicles (FCHVs) have become a major topic of interest in the automotive industry owing to recent energy supply and environmental problems. Several types of power management strategies have been developed to improve the fuel economy of FCHVs including optimal control strategy based on optimal control theory, rule-based strategy, and equivalent consumption minimization strategy (ECMS). The ECMS is applied in this study. This strategy is based on the heuristic concept that the usage of the electric energy can be exchanged to equivalent fuel consumption. This strategy is known as one of the promising solutions for real-time control of hybrid vehicles. The ECMS for an FCHV is introduced in this paper as well as the equivalent fuel consumption parameter. The relationship between the battery final state of charge (SOC) and the fuel consumption while changing the equivalent fuel consumption parameter is obtained for three different driving cycles. The function of the equivalent fuel consumption parameter is also discussed.

Energy Efficient Transmission Parameters Selection Method for CSMA/CA based HR-WPAN System under Ship Environment (선박환경에서 CSMA/CA기반 HR-WPAN 시스템의 에너지 효율적 전송파라미터 선택방식분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.760-768
    • /
    • 2009
  • In this paper, we propose the energy efficient transmission parameter selection method for Wireless Personal Area Network (WPAN) system which is applied to e-Navigation system considering various ship models environment. An appropriate selection of transmission parameters of HR-WPAN system is very essential to be considered for saving WPAN devices' energy consumption, when HR-WPAN system is applied to ship area network (SAN). Therefore, we propose an energy consumption model for a ship area network employing IEEE 802.15.3 based CSMA/CA HR-WPAN model and analyze the effect of transmission parameter selection on the performance of energy consumption. In particular, the path loss is the major performance decision parameter for the SAN employing HR-WPAN system, since it varies according to the material of shipbuilding such as steel(for large ship), FRP(for medium size ship) and compound wood(for small ship). Thus, we analyze and demonstrate that the proper transmission parameter selection of transmit power, PHY data rate and fragment size for each ship model could guarantee energy efficiency.

Evaluation of combat calorie consumption based on GoBe2 nanosensor

  • Shuo Guan;Benxu Zou
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.527-539
    • /
    • 2023
  • Measuring energy burn during intensive combat sport has been a challenging concerns for a long time. In the present article, the energy consumption during combat sports is measured by use of wearable GoBe2 equipped with nanotechnology measuring devices. In this regard, 12 professional combat athletes were asked to wear GoBe2 devices during different sessions of intensive combat exercises. The curves provided by GoBe2 nano-sensor devices are further collected and analyzed for different combat durations. On the other hand, energy consumption in these athlete is calculated using other validated methods to evaluate reliability of GoBe2 wearable devices. Based on the results obtained from these experiments a multi-parameter mathematical model is presented for estimation of combat calorie consumptions. The results show that nanotechnology in these type of sensors could help in estimation of calorie consumption during combat. Moreover, the reliability of using wearable GoBe2 sensors are satisfactory except for some specific conditions. The mathematical model provides a satisfactory results based on athlete physical condition and also duration of the combat with about 8% error margin in the results.

Energy Efficient Transmission Parameters Analysis of TDMA Based HR-WPAN System for Ship Environment (선박환경에서 에너지 효율성을 고려한 TDMA기반 고속 WPAN시스템의 전송파라미터 분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.712-718
    • /
    • 2009
  • This paper proposes the optimal transmission parameter selection method for an energy efficient Wireless Personal Area Network (WPAN) system which is applicable to the Maritime Telematics targeting for various ship models. Since the transmission parameter selection is an important factor for WPAN system to decide its energy efficiency, we propose an energy consumption model for ship area network (SAN) employing IEEE 802.15.3 based TDMA HR-WPAN model and analyzes the effect of transmission parameter selection on the performance of energy consumption. In particular, the main performance decision parameter of the SAN applying HR-WPAN is path loss, since it is very varied according to the material of shipbuilding such as steel (large ship), FRP (medium size ship) and compound wood (small ship). Thus, we analyzed and demonstrated that the proper transmission parameter selection among transmit power, PHY data rate and fragment size for each ship model guarantee the energy efficiency.

Energy Efficient Transmission Parameters Analysis of TDMA based HR-WPAN System for Ship Environment (선박환경에서 에너지 효율성을 고려한 TDMA기반 고속 WPAN시스템의 전송파라미터 분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.769-775
    • /
    • 2009
  • This paper proposes the optimal transmission parameter selection method for an energy efficient Wireless Personal Area Network (WPAN) system which is applicable to the Maritime Telematics targeting for various ship models. Since the transmission parameter selection is an important factor for WPAN system to decide its energy efficiency, we propose an energy consumption model for ship area network (SAN) employing IEEE 802.15.3 based TDMA HR-WPAN model and analyzes the effect of transmission parameter selection on the performance of energy consumption. In particular, the main performance decision parameter of the SAN applying HR-WPAN is path loss, since it is very varied according to the material of shipbuilding such as steel (large ship), FRP (medium size ship) and compound wood (small ship). Thus, we analyzed and demonstrated that the proper transmission parameter selection among transmit power, PHY data rate and fragment size for each ship model guarantee the energy efficiency.

Selecting of the Energy Performance Diagnosis Items through the Sensitivity Analysis of Existing Buildings (민감도 분석을 통한 기존건축물의 에너지성능 진단항목 선별)

  • Kong, Dong-Seok;Chang, Yong-Sung;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.354-361
    • /
    • 2015
  • The building energy audit is an important process when collecting basic information for improving the energy performance of existing buildings. Audit parameters should be associated with the energy performance of the building. Such audit parameters will vary according to an individual building's characteristics and energy consumption patterns, but most building energy audits are performed in the same way. The sensitivity analysis (SA) is a statistical method to quantify the correlation between inputs and outputs that can determine which input is influential to which output. Therefore, an SA can identify influential parameters when applied to building energy analysis. In this paper, we adopted the Morris method to identify building energy audit parameters and performed a Monte Carlo simulation for uncertainty analysis. As a result, this method was able to identify an influential parameter for building energy audits and reduce uncertainty in energy consumption in buildings.

Characterization of behaviors using electric pulse for phase switching operation of Ge2Sb2Te5 material

  • Lee, Hyeon-Cheol;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.322-322
    • /
    • 2016
  • Phase change memory (PCM) has attracted much attention as one of the most promising candidates for next-generation nonvolatile memory. In that regard, the purposes of the study are to propose reference of effective pulse parameter to control phase switching operation and to invest the effect of nitrogen doped in PCM materials for improved cycling stability and economic energy consumption. Switching operation of PCM is affected by electric pulse parameter and as shown in figure.1 are composed to RT(rising time), ST(setting time), FT(falling time) and the effect of these parameter was precisely investigated. Transmission electron microscope (TEM) was used to confirm fine structure and retention cycle test was conducted to confirm reliability. Finally improvement reliability and economic power consumption in quantitatively are obtainable by optimum pulse parameter and nitrogen doping in GST material. these study is related to the engineering background of other semiconductor industries and it have confirmed to possibility further applications.

  • PDF

A Study of Microscopic Energy Simulation based on BIM - Illuminance & Energy Analysis of Illuminance Sensor Lighting (BIM 기반의 미시적 에너지 시뮬레이션에 관한 연구 -조도센서등의 조도 및 에너지 분석을 중심으로)

  • Baek, Ji-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.384-390
    • /
    • 2019
  • The importance of architecture design focused on eco-friendly and low energy continues to grow. In addition, the energy conservation design is required from a micro-perspective. Energy simulations based on BIM have attracted recent attention because of the high efficiency. On the other hand, the parameters concerned with microscopic energy are not included in BIM data. This study examined the necessity of the sensor-light parameter using a simulation of illuminance sensor light. In this study, illuminance sensors were installed into the BIM data and the operating schedule data of sensor light were generated by an illuminance simulation. The schedule data was then inputted into the simulation application, and the reduction ratio of power consumption was verified by the simulation. According to research, the power consumption and thermal load decreased by more than 20 %. Therefore, it is necessary to supplement the sensor-light parameter into BIM data for microscopic energy conservation design. This study was not confined to checking whether sensor-light parameter is necessary or not, but to ascertaining the necessary of applying a microscopic factor to generate BIM data.

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.