• Title/Summary/Keyword: Energy Consumption Monitoring

Search Result 298, Processing Time 0.024 seconds

Energy Consumption Monitoring System for Each Axis of Machining Center (머시닝 센터의 각 축별 에너지 모니터링 시스템)

  • Kim, Jae Hyeok;Nam, Sung Ho;Lee, Dong Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.339-344
    • /
    • 2015
  • Machine tools are one of the energy-intensive equipment used in the manufacturing industry. The importance of energy has increased and the machine tools are required to be energy-efficient. The servo systems of the machine tool consume electrical power to rotate a spindle and to feed a tool during machining. Servo system consumes a lot of energy when the machine tool is operated. The energy consumption pattern of each axis needs to be investigated in order to optimize the machining process with regard to energy cost. In this paper, an energy monitoring system is developed considering various measuring points of servo system in order to grasp the energy consumption pattern of each axis.

A Monitoring System of Energy Usage for Apartment Houses Using Smart TV (스마트TV를 이용한 공동주택의 에너지 사용 모니터링 시스템)

  • Park, Sungsoo;Jin, Younghoon;Nam, Sanghun;Chai, Youngho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.451-460
    • /
    • 2013
  • This paper presents the necessary elements and data flow in developing a monitoring system of energy usage for apartment houses with a Smart TV. Energy consumption data in each home are collected and analyzed in the HUB station by way of measuring instruments. And the amount of energy usage, such as electricity, gas, hot water, heating, water and other utilities are displayed through the Smart TV application. Energy consumption Database in the HUB station are processed and displayed in the browser of a Smart TV through XML, JAVASCRIPT and Flash. Smart TV users can get the energy consumption status through the energy consumption analysis display of the Smart TV application and improve the energy efficiency by comparing the usage patterns with neighboring houses. And the application display energy usage information, consumption ranking, rates to user as well. Furthermore, usage of last month or year can be compared to help to reduce the energy usage. The proposed system can provide the information about the amount of energy use to be reduced and the warning on the waste of energy.

A Tutorial: Information and Communications-based Intelligent Building Energy Monitoring and Efficient Systems

  • Seo, Si-O;Baek, Seung-Yong;Keum, Doyeop;Ryu, Seungwan;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2676-2689
    • /
    • 2013
  • Due to increased consumption of energy in the building environment, the building energy management systems (BEMS) solution has been developed to achieve energy saving and efficiency. However, because of the shortage of building energy management specialists and incompatibility among the energy management systems of different vendors, the BEMS solution can only be applied to limited buildings individually. To solve these problems, we propose a building cluster based remote energy monitoring and management (EMM) system and its functionalities and roles of each sub-system to simultaneously manage the energy problems of several buildings. We also introduce a novel energy demand forecasting algorithm by using past energy consumption data. Extensive performance evaluation study shows that the proposed regression based energy demand forecasting model is well fitted to the actual energy consumption model, and it also outperforms the artificial neural network (ANN) based forecasting model.

A Study on Heating Energy Monitoring of a Rural Detached House Applying Passive House Design Components (패시브 하우스 디자인 요소를 적용한 농촌지역 단독주거건물의 난방에너지 모니터링 연구)

  • Cho, Kyung-Min;Lee, Tae-Goo;Han, Young-Hae
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • Recently, the field of construction is putting a variety of effort into reducing CO2, since global warming is being accelerated due to climate changes and the increase of greenhouse gas. For reduction of CO2 in the field of construction, it is required to make plans to cut down heating energy of buildings and especially, it is urgently needed to cut down energy of residential buildings in rural area where occupies the majority of consumption of petroleum-based energy sources. Therefore, this research compared and analyzed the actual energy consumption, by evaluating energy performance of a detached house applying passive house design components for reduction of energy. As the result, energy consumption showed remarkable differences, according to the operation of a heat recovery ventilation unit which is one of passive house design components, and building energy consumption displayed remarkable differences, too, depending on the difference of airtightness performance during building energy simulation conducted in process of design. Based on these results, the importance of airtightness performance of passive house was verified. The result of the actual measurement of energy consumption demonstrated that LNG was most economical amongst several heat resources yielded, on the basis of LPG source energy consumption measured within a certain period of time, and it was followed by kerosene. LPG was analyzed to have a low economic efficiency, when used for heating.

Energy-Efficient Context Monitoring Methods for Android Devices (안드로이드 디바이스를 위한 에너지 효율적 컨텍스트 모니터링 기법)

  • Kim, Moon Kwon;Lee, Jae Yoo;Kim, Soo Dong
    • Journal of Software Engineering Society
    • /
    • v.26 no.3
    • /
    • pp.53-62
    • /
    • 2013
  • Along with increasing supplies of smart devices, a proliferation of context-aware applications is came. However, acquiring contexts through sensors requires considerable energy consumption. It has became big constraints on running many context-aware applications in mobile devices having limited battery capacity. Hence, energy-efficient methods for monitoring contexts are highly required. In this paper, we propose four context monitoring methods, analyse energy consumption in each method, and provide guidelines for applying the methods. It is effective to decrease energy consumption for monitoring contexts with applying the methods. To assess the proposed methods, we implement an application that is aware of a user's motion and show quantitative comparison between each of the methods.

  • PDF

A Research for Agentless Monitoring Application of Energy Consumption Analysis in a Data Center (데이터센터의 효율적인 에너지소비분석을 위한 에이전트리스 모니터링 애플리케이션에 관한 연구)

  • Lee, Yunho;Jung, Hyedong;Lim, Hojung;Kang, Jeonghoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.896-899
    • /
    • 2016
  • Server management and power management are important to operate a data center stably and efficiently. By this paper, we introduce an web based application that is able to monitor and visualize energy consumption, help to energy consumption analysis of a data center due to provide server monitoring information such as temperatures for server, status of each device, power status using server management interfaces and power management modules in data center, also suggest the methods to implement them. This application takes advantage of IPMI which is server management standard interfaces and server management technology in manufacturer's individual way so it can do integrated monitoring for heterogeneous severs, and there is little monitoring load inside of server system because it doesn't need to install agent program for monitoring target system, and it can be used successfully to energy consumption analysis, server management in a data center due to realtime provided energy consumption and monitoring information.

  • PDF

Accuracy Verification of Heart Rate and Energy Consumption Tracking Devices to Develop Forest-Based Customized Health Care Service Programs

  • Choi, Jong-Hwan;Kim, Hyeon-Ju
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.2
    • /
    • pp.219-229
    • /
    • 2019
  • This study was carried out to verify the accuracy of fitness tracking devices in monitoring heart rate and energy consumption and to contribute to the development of a forest exercise program that can recommend the intensity and amount of forest exercises based on personal health-related data and provide monitoring and feedback on forest exercises. Among several commercially available wearable devices, Fitbit was selected for the research, as it provides Open API and data collected by Fitbit can be utilized by third parties to develop programs. Fitbit provides users with various information collected during forest exercises including exercise time and distance, heart rate, energy consumption, as well as the altitude and slope of forests collected by GPS. However, in order to verify the usability of the heart rate and energy consumption data collected by Fitbit in forest, the accuracy of heart rate and energy consumption were verified by comparing the data collected by Fitbit and reference. In this study, 13 middle-aged women were participated, and it was found that the heart rate measured by Fitbit showed a very low error rate and high correlation with that measured by the reference. The energy consumption measured by Fitbit was not significantly different from that measured in the reference, but the error rate was slightly higher. However, there was high correlation between the results measured by Fibit and the reference, therefore, it can be concluded that Fitbit can be utilized in developing actual forest exercise programs.

Cluster-Based Node Management Algorithm for Energy Consumption Monitoring in Wireless Mobile Ad Hoc Networks (무선 모바일 애드혹 네트워크상에서 에너지 소모 감시를 위한 클러스터 기반의 노드 관리 알고리즘)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.309-315
    • /
    • 2016
  • The node mobility in the wireless mobile network environment increases the energy consumption. This paper proposes a CNMA (cluster-based node management algorithm) to reduce the energy consumption caused by node mobility, and to prolong the life cycle for cluster member nodes. The proposed CNMA traces the mobility for nodes between cluster header and member, and it analyses the energy capacity as monitoring periodically their relationship. So, it makes a division and merges by analysing the state transition for nodes. This paper is to reduce the energy consumption due to the node mobility. The simulation results show that the proposed CNMA can efficiently control the energy consumption caused by mobility, and it can improve the energy cycle.

Energy-Efficient Adaptive Dynamic Sensor Scheduling for Target Monitoring in Wireless Sensor Networks

  • Zhang, Jian;Wu, Cheng-Dong;Zhang, Yun-Zhou;Ji, Peng
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.857-863
    • /
    • 2011
  • Due to uncertainties in target motion and randomness of deployed sensor nodes, the problem of imbalance of energy consumption arises from sensor scheduling. This paper presents an energy-efficient adaptive sensor scheduling for a target monitoring algorithm in a local monitoring region of wireless sensor networks. Owing to excessive scheduling of an individual node, one node with a high value generated by a decision function is preferentially selected as a tasking node to balance the local energy consumption of a dynamic clustering, and the node with the highest value is chosen as the cluster head. Others with lower ones are in reserve. In addition, an optimization problem is derived to satisfy the problem of sensor scheduling subject to the joint detection probability for tasking sensors. Particles of the target in particle filter algorithm are resampled for a higher tracking accuracy. Simulation results show this algorithm can improve the required tracking accuracy, and nodes are efficiently scheduled. Hence, there is a 41.67% savings in energy consumption.

Design and Verification using Energy Consumption Model of Low Power Sensor Network for Monitoring System for Elderly Living Alone (독거노인 모니터링 시스템을 위한 저전력 센서 네트워크 설계 및 에너지 소모 모델을 이용 검증)

  • Kim, Yong-Joong;Jung, Kyung-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • Wireless sensor networks consist of small, autonomous devices with wireless networking capabilities. In order to further increase the applicability in real world applications, minimizing energy consumption is one of the most critical issues. Therefore, accurate energy model is required for the evaluation of wireless sensor networks. In this paper we analyze the power consumption for wireless sensor networks. To develop the power consumption model, we have measured the power characteristics of commercial Kmote node based on TelosB platforms running TinyOS. Based on our model, the estimated lifetime of a battery powered sensor node can use about 6.9 months for application of human detection using PIR sensors. This result indicates that sensor nodes can be used in a monitoring system for elderly living alone.

  • PDF