• Title/Summary/Keyword: Energy Consumption Efficiency

Search Result 1,783, Processing Time 0.038 seconds

Synthesis of NaY Zeolites by Microwave and Conventional Heating (마이크로파 및 기존 가열 방법에 의한 제올라이트 NaY의 합성)

  • Choi, Ko-Yeol;Conner, W. Curtis
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2007
  • NaY zeolites synthesized by microwave heating were compared with those obtained by conventional heating. When the same temperature increasing rates were adopted in both heating methods, the microwave heating shortened the induction period and enhanced the rate of crystallization of NaY zeolites compared with the conventional heating. Irrespective of microwave radiation, the fast temperature increasing rate also shortened the induction time and enhanced the crystallization of NaY zeolites. The crystal sizes of NaY zeolites were large under the fast temperature raise of the reaction mixture and became larger by microwave radiation. At the same time, the fast temperature increasing rate has reduced the energy consumption due to the fast completion of reaction during the synthesis of NaY zeolite. The energy consumption in the conventional ethylene glycol bath was lower than that in the microwave oven with the same temperature increasing rate in this study, which means that the energy efficiency is not always high in microwave heating. If the temperature increasing rate is carefully controlled, however, NaY zeolite can be produced with high energy efficiency in the microwave oven.

Effects of Pulp Pre-treatment and Grinder Clearance on the Manufacturing Characteristics of Microfibrillated Cellulose (펄프의 전처리 및 그라인더 간격이 MFC 제조 특성에 미치는 영향)

  • Yong, Seong Moon;Kwak, Gun Ho;Cho, Byoung-Uk;Lee, Yong Kyu;Won, Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.61-69
    • /
    • 2015
  • A number of researches have been carried out regarding the utilization of nanocellulose(crystalline nanocellulose, microfibrillated cellulose, nanofibrillated cellulose) for the manufacture of various kinds of composites and functional products. However, only few research works on the manufacturing characteristics of nanocellulose could be found, although some companies started already the production of nanocellulose in commercial scale. However, the most important thing in commercializing of production and utilization of nanocellulose is to develop the economical and efficient process. Thus, this study was carried out in order to investigate the effects of refining, alkaline pre-treatment and grinder clearance on the characteristics of microfibrillated cellulose and energy consumption. There was no significant differences in crystalline index with the degree of microfibrillation. The initial fibrillation could be improved by refining pre-treatment, but its effect was not observed anymore since the fibrillation was done up to certain level by grinding. Refining pre-treatment did not improved the energy efficiency. Alkaline pre-treatment can be helpful because the swelling of pulp fiber will facilitate fibrillation. It was found that the decrease in grinder clearance was helpful to improve the energy efficiency.

Development of Swimming Mechanism and Algorithm for Fish-Type Underwater Robot(1) (물고기형 수중로봇의 유영메커니즘 및 알고리즘 개발(1))

  • Ryuh, Young-Sun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • Generally, underwater vehicle type of propeller shows low efficiency about 50%-55%. However, the efficiency of swimming mechanism of a fish is 60%-70%, more efficient about 20% than screw propellers. Recently, research of underwater vehicle type of fish increase due to its good efficiency and is regarded as a typical bio-mimical robot. In this research, a new algorithm and mechanism that show low energy consumption imitating swimming mechanism of fish proposed increasing speed and running time in field trial.

  • PDF

Characteristics of Eleclrolytic Treatment of Dye Wastewater (염색폐수의 전해처리 특성)

  • 전법주;윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.37-46
    • /
    • 1996
  • In this study, the effect of pH, Temp, dye concentration, distance of electrode, and the potential on the removal efficiency of dye-wastewater using electrochemical reaction were investigated. Optimum conditions for the electrochemical treatment of dye-wastewater were obtained that pH;7, 8V, electrode distance; 1cm and the reaction time for obtaining above 99% removal efficiency were 10 - 40min at each conditions, From this result, we can determine the instantaneous current efficiency and specific energy consumption, and we can provide the effective data for economical treatment of industrial dye-wastewater.

  • PDF

An Analysis of Efficiency and Government Policies of ESS (에너지 저장시스템의 효율성 검토 및 정책 분석)

  • Kim, Bum-Gon;Lee, Seoung-Cheol;Kim, Cheol-Hwan;Lee, See-Bin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2373-2382
    • /
    • 2011
  • As the government set the direction for Green Growth recently, so local government struggles to obtain carbon emissions trading. In the center of this global environment atmosphere, the quantitative targets would be suggested by some developed countries. In case of a international green movement like this, it would have been being induced from by crystallizing of economic and environmental regulations and legal policies that not only a meter-rate system of carbon emissions but also application for regenerate energy. In this paper, we researched cultivating of energy storage system(ESS) to conjugate regenerative energy of train, an energy efficiency and cultivating cost etc. In conclusion, we would acknowledge a difficulty in cultivating ESS only for cost reduction of energy consumption, so governmental policies for green growth should be thoughtfully examined.

  • PDF

Microwave-enhanced Acceleration and Energy-efficiency of Biodiesel Synthesis (마이크로파에 의한 바이오디젤 합성의 가속화와 에너지 효율성)

  • Kim, Daeho;Jung, SunShin;Seol, Seung Kwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.108.2-108.2
    • /
    • 2011
  • This presentation shows energy-efficiency of microwave-accelerated esterification of free fatty acid with a heterogeneous catalyst by net microwave power measurement. In the reaction condition of 5wt% sulfated zirconia and 1:20 molar ratio of oil to methanol at $60^{\circ}C$ and atmospheric pressure, more than 90% conversion of the esterification was achieved in 20 minutes by microwave heating, while it took about 130 minutes by conventional heating. Electric energy consumption for the microwave heating in this accelerated esterification was only 67% of estimated minimum heat energy demand because of significantly reduced reaction time.

  • PDF

POSCO's Research and Development works on rare earth reduced NdFeB magnets production process

  • Yuh, Junhan
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.90-90
    • /
    • 2013
  • Since discovery, NdFeB permanent magnet has replaced application of the conventional magnets rapidly because of its superior physical and mechanical properties. With increasing consumption of power combined with energy resource depletion, energy efficiency is becoming more and more inportant. According to recent reports, almost almost half of the electric power is consumed by motor, and NdFeB magnets which are the core component of the motor play a key role on improving energy efficiency of the devices. In parallel with finding alternatives energy resources, research works improving energy efficiecy have been conducted world wide. Althogh NdFeB magnets usage have been expanded to various applications, key materials such as Nd and Dy, resouces lean heavily on specific area, China. Magnetic industry revently experienced skyrocketing price fluctuatioin of rare earth at around 2008. Chineses government's regulations worsened the situation and arose a necessity to develop methods to minimize rare earth use. In this presentation, POSCO's recent research works on rare earth reduction is presented including novel powder alloying method using nitrate precursors. Also, future R&D plans for rare earth free magnets is briefly introduced as well.

  • PDF

Modelling of Swimming Ability Limits for Marine Fish

  • KIM Yong-Hae;WARDLE Clement S.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.929-935
    • /
    • 1997
  • The total energy of fish movement and the maximum burst swimming speed were estimated and formulated in accordance with body length and water temperature for several species in fisheries by empirical methods and also by using published results. Under the assumption of swimming energy reserve of a fish at the initial rest state, the swimming endurance of fish with different body lengths, swimming speeds and angular velocity was calculated using the relevant equations under similar conditions in tank experiments as well as natural conditions in field. Relative swimming energy efficiency or the transition swimming speed between red and white muscle for energy consumption was represented as a trigonometric function of swimming speed ratio. Therefore, this model does closely approach the actual swimming abilities and their limits especially in relation to the fishing gear operation and allow for the greater vitality of the wild fish in the fields.

  • PDF

A "Fabric-First" Approach to Sustainable Tall Building Design

  • Oldfield, Philip
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • This research suggests the most effective way for improving energy efficiency in tall buildings is a "fabric-first" approach. This involves optimizing the performance of the building form and envelope as a first priority, with additional technologies a secondary consideration. The paper explores a specific fabric-first energy standard known as "Passivhaus". Buildings that meet this standard typically use 75% less heating and cooling. The results show tall buildings have an intrinsic advantage in achieving Passivhaus performance, as compared to low-rise buildings, due to their compact form, minimizing heat loss. This means high-rises can meet Passivhaus energy standards with double-glazing and moderate levels of insulation, as compared to other typologies where triple-glazing and super-insulation are commonplace. However, the author also suggests that designers need to develop strategies to minimize overheating in Passivhaus high-rises, and reduce the quantity of glazing typical in high-rise residential buildings, to improve their energy efficiency.

Towards Resource-Generative Skyscrapers

  • Imam, Mohamed;Kolarevic, Branko
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.2
    • /
    • pp.161-170
    • /
    • 2018
  • Rapid urbanization, resource depletion, and limited land are further increasing the need for skyscrapers in city centers; therefore, it is imperative to enhance tall building performance efficiency and energy-generative capability. Potential performance improvements can be explored using parametric multi-objective optimization, aided by evaluation tools, such as computational fluid dynamics and energy analysis software, to visualize and explore skyscrapers' multi-resource, multi-system generative potential. An optimization-centered, software-based design platform can potentially enable the simultaneous exploration of multiple strategies for the decreased consumption and large-scale production of multiple resources. Resource Generative Skyscrapers (RGS) are proposed as a possible solution to further explore and optimize the generative potentials of skyscrapers. RGS can be optimized with waste-energy-harvesting capabilities by capitalizing on passive features of integrated renewable systems. This paper describes various resource-generation technologies suitable for a synergetic integration within the RGS typology, and the software tools that can facilitate exploration of their optimal use.