• Title/Summary/Keyword: Energy Consumption Efficiency

Search Result 1,782, Processing Time 0.028 seconds

A Comparative Study on Evaluation Methods of Energy of Green Building Certification Criteria 2010 and LEED 2009 (국내 친환경건축물인증제도2010과 LEED2009에서의 에너지평가방법에 대한 비교 연구)

  • Hyun, Eun Mi;Kim, Yong Sik
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.39-47
    • /
    • 2012
  • Recently, the green building and energy connection system are establishing. But, National certification system for environment-Friendly Buildings is indicated hangup about energy efficiency of building. Commissioning, energy conservation, renewable energy, carbon dioxide emissions, it is determined that the energy associated with LEED and GBCC four items of the comparative analysis showed the following results. First, on the practical performance of the system after the completion of commissioning of the energy associated with the system completed until after the final performance for secure operation from the planning stage to verify and document systematically how to perform, but the domestic review and verification is incomplete. Second, the use of energy-saving and renewable energy is directly related to the energy consumption of the building, but GBCC the strengthening of standards on how to evaluate it is deemed necessary. Finally, the evaluation of the reduction of carbon dioxide emissions, LEED Unlike GBCC the life-cycle of the system without considering the global warming index only because a substantial step in the operating efficiency can not be assessed. Based on this study GBCC energy savings through efficiency to actively carry out research through a systematic analysis of the basic guidelines to proceed.

A Study on Distributed Collective Energy Policy Changes: Focusing on the National Heat Map Project Based on Energy Data (분산형 집단에너지 정책변동 연구: 에너지 데이터 기반의 국가 열지도 사업을 중심으로)

  • Park Eunsook;Park Yongsung
    • Knowledge Management Research
    • /
    • v.24 no.1
    • /
    • pp.195-221
    • /
    • 2023
  • As the global energy and climate crisis has complicated interests of each country, the agenda that requires a global response has recently been revived. In particular, Korea is highly dependent on energy imports and continues to have high energy consumption, low efficiency of energy consumption, and high greenhouse gas emissions, so innovative and effective energy policies are urgently needed to achieve energy efficiency and carbon neutrality. In this study, among the changes in distributed district energy policy after the integrated energy method was introduced in Korea in the mid-1980's, the case of the "National Heat Map Project" policy implementation is analyzed with a modified multi-flow model. The 10 years of the Lee Myung-bak and Park Geun-hye administrations, the period of study, was a period in which the main paradigm of energy policy shifted to a "distributed energy platform" and policy transitions such as policy agenda setting, policy drift, and policy revision were made. A study on the process would be meaningful.

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

A Scheduling Scheme Considering Multiple-Target Coverage and Connectivity in Wireless Sensor Networks (무선 센서 네트워크에서 다중 타겟 커버리지와 연결성을 고려한 스케줄링 기법)

  • Kim, Yong-Hwan;Han, Youn-Hee;Park, Chan-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.453-461
    • /
    • 2010
  • A critical issue in wireless sensor networks is an energy-efficiency since the sensor batteries have limited energy power and, in most cases, are not rechargeable. The most practical manner relate to this issue is to use a node wake-up scheduling protocol that some sensor nodes stay active to provide sensing service, while the others are inactive for conserving their energy. Especially, CTC (Connected Target Coverage) problem has been considered as a representative energy-efficiency problem considering connectivity as well as target coverage. In this paper, we propose a new energy consumption model considering multiple-targets and create a new problem, CMTC (Connected Multiple-Target Coverage) problem, of which objective is to maximize the network lifetime based on the energy consumption model. Also, we present SPT (Shortest Path based on Targets)-Greedy algorithm to solve the problem. Our simulation results show that SPT-Greedy algorithm performs much better than previous algorithm in terms of the network lifetime.

Study on Energy Efficiency Improvement in Manufacturing Core Processes through Energy Process Innovation (에너지 프로세스 혁신을 통한 제조 핵심 공정의 에너지 효율화 방안 연구)

  • Sang-Joon Cho;Hyun-Mu Lee;Jin-Soo Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.43-48
    • /
    • 2023
  • Globally, there is a collaborative effort to achieve global carbon neutrality in response to climate change. In the case of South Korea, greenhouse gas emissions are rapidly increasing, presenting an urgent situation that requires resolution. In this context, this study developed a thermal energy collection device named a 'steam trap' and created an AI model capable of predicting future electricity usage by collecting energy usage data through steam traps. The average accuracy of electricity usage prediction with this AI model was 96.7%, demonstrating high precision. Consequently, the AI model enables the prediction and management of days with high electricity consumption and identifies which facilities contribute to elevated power usage. Future research aims to optimize energy consumption efficiency through efficient equipment operation using anomaly detection in steam traps and standardizing energy management systems, with the ultimate goal of reducing greenhouse gas emissions.

Motion recognition LED lamp technology using infrared ray sensor

  • Zouhaier, Muhamud
    • Korean Journal of Artificial Intelligence
    • /
    • v.4 no.1
    • /
    • pp.1-3
    • /
    • 2016
  • These days, citizens are interested in the energy. IT technology needs to develop and to make use of energy effectively and to save energy. In this study, motion recognition LED lamp was used to have good energy efficiency and to be made of environment friendly material. The purpose of development of the lamp was to add motion recognition to LED lamp. In this study, infrared ray sensor's distance measurement was used to develop LED lamp. Most of the lamps were used under dark environment, so that infrared ray sensor was used to perceive movement under dark environment. And, LED lamp with good efficiency and less power consumption was used to increase efficiency. Citizens were interested in perception of the movement to distinguish from conventional type of the lamps.

Dynamic Single Path Routing Mechanism for Reliability and Energy-Efficiency in a Multi Hop Sensor Network (다중 홉 센서 네트워크에서 신뢰성과 에너지 효율성을 고려한 동적 단일경로 설정기법)

  • Choi, Seong-Yong;Kim, Jin-Su;Jung, Kyung-Yong;Han, Seung-Jin;Choi, Jun-Hyeog;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.31-40
    • /
    • 2009
  • What are important in wireless sensor networks are reliable data transmission, energy efficiency of each node, and the maximization of network life through the distribution of load among the nodes. The present study proposed DSPR, a dynamic unique path routing machanism that considered these requirements in wireless sensor networks. In DSPR, data is transmitted through a dynamic unique path, which has the least cost calculated with the number of hops from each node to the sink, and the average remaining energy. At that time, each node monitors its transmission process and if a node detects route damage it changes the route dynamically, referring to the cost table, and by doing so, it enhances the reliability of the network and distributes energy consumption evenly among the nodes. In addition, when the network topology is changed, only the part related to the change is restructured dynamically instead of restructuring the entire network, and the life of the network is extended by inhibiting unnecessary energy consumption in each node as much as possible. In the results of our experiment, the proposed DSPR increased network life by minimizing energy consumption of the nodes and improved the reliability and energy efficiency of the network.

Power conversion control for zero emission buildings (탄소제로 빌딩을 위한 전력변환 제어)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.504-505
    • /
    • 2011
  • Decreasing actual greenhouse gas will be difficult if it is not solved addressed in architectural fields. Zero emission building or zero energy building, maximize the efficiency of energy, which means the building can operate by their own renewable energy facility without any other supplying. To be a zero emission building, a building needs realization of high efficiency low energy consumption, construction of building its own energy production facilities and lastly a power grid connection. According to increasing of DC load about TV, LED lighting, computer, IT in building for living and business, it is expected the save of energy when the system of AC power distribution change into the system of DC power distribution. Renewable energy exists a big different rate produced by outside environment. When electrical power overproduce, it can supply for system. Otherwise, if electrical power produce less, it can receive supply from system. Send and receive power can lead to zero to annual standard. This paper shows the simulation about efficient control of power conversion which is related to DC power distribution of architecture and DC output of renewable energy by using L-type converter.

  • PDF

Power Electronics as an Enabling Technology for Renewable Energy Integration

  • Blaabjerg, F.;Chen, Z.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity, to produce, distribute and use the energy as0 efficient as possible and furthermore to set up incentives to save energy at the md-user. Two major technologies will play important roles to fulfill those targets. One is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficiency power electronics in power systems for high efficiency and high performance applications. This paper discusses both areas, in particular the power electronic application in wind power integration.

A Study on the Evaluation of Apartment Building Energy Efficiency Rating Considering the Performance of Thermal Insulators and Window glasses (창호 및 단열재 변수에 따른 공동주택 에너지효율등급 평가 사례)

  • Kim, Han-Soo;Yun, Hae-Dong;Byun, Woon-Seob
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.706-711
    • /
    • 2009
  • Energy shortage and environmental pollution caused by fossil fuels are very serious problem. Especially buildings have consumed more and more energy, and buildings are spend up to 25% of total energy consumption. So we should prepare alternatives to save energy in buildings. In apartment houses, The efficiency of thermal insulators and window glasses is very important to curtail heating energy. In this study, the energy rating of Apartment building is evaluated by applying various thermal insulators and window glasses.

  • PDF