• 제목/요약/키워드: Energy Consumption Devices

검색결과 365건 처리시간 0.023초

Evaluation of combat calorie consumption based on GoBe2 nanosensor

  • Shuo Guan;Benxu Zou
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.527-539
    • /
    • 2023
  • Measuring energy burn during intensive combat sport has been a challenging concerns for a long time. In the present article, the energy consumption during combat sports is measured by use of wearable GoBe2 equipped with nanotechnology measuring devices. In this regard, 12 professional combat athletes were asked to wear GoBe2 devices during different sessions of intensive combat exercises. The curves provided by GoBe2 nano-sensor devices are further collected and analyzed for different combat durations. On the other hand, energy consumption in these athlete is calculated using other validated methods to evaluate reliability of GoBe2 wearable devices. Based on the results obtained from these experiments a multi-parameter mathematical model is presented for estimation of combat calorie consumptions. The results show that nanotechnology in these type of sensors could help in estimation of calorie consumption during combat. Moreover, the reliability of using wearable GoBe2 sensors are satisfactory except for some specific conditions. The mathematical model provides a satisfactory results based on athlete physical condition and also duration of the combat with about 8% error margin in the results.

공공청사 리트로핏 설계 시 외부 수평 차양 장치에 따른 에너지 소비량 절감 방안 (The Reduction of Energy Consumption by the Exterior Horizontal Shading Device during Design for the Retrofit of Public Buildings)

  • 어진선;장지훈;이승복;김병선
    • KIEAE Journal
    • /
    • 제17권2호
    • /
    • pp.29-34
    • /
    • 2017
  • Purpose: Recently, significant heat loss through the window takes place in buildings. Nevertheless, there exists little literature concerning the exterior horizontal shading devices and the design criteria are not clearly settled yet. Applying the exterior horizontal shading devices is more efficient as compared to the interior shading devices in that solar radiation can be directly blocked before passing through the window or the envelope. The purpose of this study is to reduce the internal load by designing the exterior horizontal shading devices and verify the degree of reduction in energy consumption. Method: This study aims to reduce energy consumption in cooling and heating through proposing proper length and shape of the exterior horizontal shading devices in public buildings. In the process, actual energy data and the Design Builder simulation program are utilized. In addition, economic aspect is considered to figure out the optimal length of the exterior horizontal shading devices that maximizes efficiency. Result: As a result, the proper length and shape of the exterior horizontal shading devices are provided as follows: 1) Energy consumption in cooling and heating is minimized when the exterior horizontal shading devices are designed as 0.5m*2. 2) Electricity bill is the lowest when the exterior horizontal shading devices are designed as 3.3m*2. The gap between maximum and minimum electricity bill is about 7.8~14%.

Accuracy Verification of Heart Rate and Energy Consumption Tracking Devices to Develop Forest-Based Customized Health Care Service Programs

  • Choi, Jong-Hwan;Kim, Hyeon-Ju
    • 인간식물환경학회지
    • /
    • 제22권2호
    • /
    • pp.219-229
    • /
    • 2019
  • This study was carried out to verify the accuracy of fitness tracking devices in monitoring heart rate and energy consumption and to contribute to the development of a forest exercise program that can recommend the intensity and amount of forest exercises based on personal health-related data and provide monitoring and feedback on forest exercises. Among several commercially available wearable devices, Fitbit was selected for the research, as it provides Open API and data collected by Fitbit can be utilized by third parties to develop programs. Fitbit provides users with various information collected during forest exercises including exercise time and distance, heart rate, energy consumption, as well as the altitude and slope of forests collected by GPS. However, in order to verify the usability of the heart rate and energy consumption data collected by Fitbit in forest, the accuracy of heart rate and energy consumption were verified by comparing the data collected by Fitbit and reference. In this study, 13 middle-aged women were participated, and it was found that the heart rate measured by Fitbit showed a very low error rate and high correlation with that measured by the reference. The energy consumption measured by Fitbit was not significantly different from that measured in the reference, but the error rate was slightly higher. However, there was high correlation between the results measured by Fibit and the reference, therefore, it can be concluded that Fitbit can be utilized in developing actual forest exercise programs.

Adaptive Filtering Scheme for Defense of Energy Consumption Attacks against Wireless Computing Devices

  • Lee, Wan Yeon
    • International journal of advanced smart convergence
    • /
    • 제7권3호
    • /
    • pp.101-109
    • /
    • 2018
  • In this paper, we propose an adaptive filtering scheme of connection requests for the defense of malicious energy consumption attacks against wireless computing devices with limited energy budget. The energy consumption attack tries to consume the battery energy of a wireless device with repeated connection requests and shut down the wireless device by exhausting its energy budget. The proposed scheme blocks a connection request of the energy consumption attack in the middle, if the same connection request is repeated and its request result is failed continuously. In order to avoid the blocking of innocuous mistakes of normal users, the scheme gives another chance to allow connection request after a fixed blocking time. The scheme changes the blocking time adaptively by comparing the message arriving ate during non-blocking period and that during blocking period. Evaluation shows that the proposed defense scheme saves up to 94% energy consumption compared to the non-defense case.

사용자 경험을 기반으로 big.LITTLE 멀티코어 구조의 스마트 모바일 단말의 에너지 소비를 최적화 하는 소프트웨어 구조 설계 (User Experience Assisted Energy-Efficient Software Design for Mobile Devices on the big.LITTLE Core Architecture)

  • 임성화
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.23-28
    • /
    • 2020
  • In Smart mobile devices embedding big.LITTLE architectures, the conventional multi-core assignment scheme for user applications may incur wasteful energy consumption and long response time. In this paper, we propose a user experience assisted energy-efficient multicore assignment scheme. Our simulation results show that the proposed scheme achieves at 40% less energy consumption and at 20% less response time comparing to the legacy scheme.

창의 형태 및 차양 계획에 따른 다인 병실의 에너지소비량과 주광조도의 평가 및 분석 (Energy Consumptions and Daylight Illumination levels of a Multi-beded Patient Room according to the Window Shapes and Shading)

  • 최창대;권순정;김선숙
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제18권3호
    • /
    • pp.29-39
    • /
    • 2012
  • Window and shading designs have a great influence on energy consumption and daylighting in buildings. As far as energy is concerned, small window area is advantageous. But it is not good to the patient healing in hospital. So it is important to find out the optimum window shape which is favorable for both energy consumption and patient healing. In this study, annual energy consumption and daylight illumination levels were analyzed according to the window shapes and shading devices for a multi-beded patient room in hospitals. The simulations were conducted for 19 different cases by COMFEN 4.0 computer simulation program. The results of this paper are as follows. First, window to wall area ratio and shading devices have great influences on annual energy consumption. But it is a problem in that they decrease significantly daylight level in bed room. Second, considering the same energy consumption, reducing the width of window rather than the hight of window is desirable for the secure of daylight level. Third, increase of the number of horizontal shade is not desirable in south face of the building for the energy consumption and daylight level. Fourth, sun shade is not necessary in north face of the building for the energy consumption and daylight level.

Optimization of Energy Consumption in the Mobile Cloud Systems

  • Su, Pan;Shengping, Wang;Weiwei, Zhou;Shengmei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4044-4062
    • /
    • 2016
  • We investigate the optimization of energy consumption in Mobile Cloud environment in this paper. In order to optimize the energy consumed by the CPUs in mobile devices, we put forward using the asymptotic time complexity (ATC) method to distinguish the computational complexities of the applications when they are executed in mobile devices. We propose a multi-scale scheme to quantize the channel gain and provide an improved dynamic transmission scheduling algorithm when offloading the applications to the cloud center, which has been proved to be helpful for reducing the mobile devices energy consumption. We give the energy estimation methods in both mobile execution model and cloud execution model. The numerical results suggest that energy consumed by the mobile devices can be remarkably saved with our proposed multi-scale scheme. Moreover, the results can be used as a guideline for the mobile devices to choose whether executing the application locally or offloading it to the cloud center.

AFA(All-Flash Array) 탑재 서버의 에너지 효율성에 대한 연구 (A Study on Energy Efficiency in Servers Adopting AFA(All-Flash Array))

  • 김영만;한재일
    • 한국IT서비스학회지
    • /
    • 제18권1호
    • /
    • pp.79-90
    • /
    • 2019
  • Maximizing energy efficiency minimizes the energy consumption of computation, storage and communications required for IT services, resulting in economic and environmental benefits. Recent advancement of flash and next generation non-volatile memory technology and price decrease of those memories have led to the rise of so-called AFA (All-Flash Array) storage devices made of flash or next generation non-volatile memory. Currently, the AFA devices are rapidly replacing traditional storages in the high-performance servers due to their fast input/output characteristics. However, it is not well known how effective the energy efficiency of the AFA devices in the real world. This paper shows input/output performance and power consumption of the AFA devices measured on the Linux XFS file system via experiments and discusses energy efficiency of the AFA devices in the real world.

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • 제5권4호
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.

Energy Bad Smells 기반 소모전력 절감을 위한 코드 리팩토링 기법 (Code Refactoring Techniques Based on Energy Bad Smells for Reducing Energy Consumption)

  • 이제욱;김두환;홍장의
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권5호
    • /
    • pp.209-220
    • /
    • 2016
  • 최근 스마트폰, 태블릿과 같은 기기의 사용량이 증가하면서, 이에 탑재되는 소프트웨어는 더욱 복잡해지고 규모가 커지고 있다. 배터리의 전력으로 구동되는 모바일 기기들은 전력 공급의 한계로 인해 운용시간을 증가시키는 것이 중요한 이슈이다. 최근에는 소프트웨어 동작이 하드웨어 구동을 통해 전력 소모를 일으킨다는 점에서, 효율적인 동작 패턴을 갖는 소프트웨어 개발에 대한 연구들이 진행되고 있다. 그러나 모바일 기기에 탑재되는 소프트웨어는 그 개발 주기가 짧은 경우가 많아 최적화와 전력 소모량을 반영하기 어려운 경우가 많다. 따라서 본 연구에서는 소모전력 절감을 위한 코드 리팩토링 기법을 제안하여, 소프트웨어 개발 및 유지보수에서 보다 용이하게 저전력 요구사항을 충족시키고자 한다. 이를 위해 전력 소모량을 감소시킬 수 있는 코드 패턴에 대하여 Energy Bad Smell을 식별하고, 이를 제거하기 위한 새로운 코드 리팩토링 기법을 제안하며, 실험을 통해 그 효용성을 검증하였다.