• Title/Summary/Keyword: Energy Balancing

Search Result 290, Processing Time 0.025 seconds

Enhanced Switching Pattern to Improve Energy Transfer Efficiency of Active Cell Balancing Circuits Using Multi-winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로의 에너지 전달 효율을 높이기 위한 향상된 스위칭 패턴)

  • Lee, Sang-Jung;Kim, Myoungho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • This study proposes an enhanced switching pattern that can improve energy transfer efficiency in an active cell-balancing circuit using a multiwinding transformer. This balancing circuit performs cell balancing by transferring energy stored in a specific cell with high energy to another cell containing low energy through a multiwinding transformer. The circuit operates in flyback and buck-boost modes in accordance with the energy transfer path. In the conventional flyback mode, the leakage inductance of the transformer and the stray inductance component of winding can transfer energy to an undesired path during the balancing operation. This case results in cell imbalance during the cell-balancing process, which reduces the energy transfer efficiency. An enhanced switching pattern that can effectively perform cell balancing by minimizing the amount of energy transferred to the nontarget cells due to the leakage inductance components in the flyback mode is proposed. Energy transfer efficiency and balancing speed can be significantly improved using the proposed switching pattern compared with that using the conventional switching pattern. The performance improvements are verified by experiments using a 1 W prototype cell-balancing circuit.

Evaluation of Energy Consumption through Field Measurement at the Apartment Housing Unit Using Dynamic Flow Rate Balancing (실물실험을 통한 다이나믹 유량밸런싱 적용 공동주택 세대의 에너지소비량 평가)

  • Ryu, Seong-Ryong;Cheong, Chang-Heon;Cho, Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Even though the control device of the heating system works well, insufficient water flow rates can degrade control performance and thermal comfort. The water flow rate should be adjusted appropriately to cope with the heating load of each zone. In order to solve these problems, a new balancing concept 'dynamic balancing' was proposed where a balancing valve opening can be automatically modulated according to the heating condition of the room. This study analyzed the effects of dynamic balancing upon indoor thermal environment and energy consumption in a radiant floor heating system through field measurement. Under part-load conditions, the use of a dynamic balancing is a more effective method to reduce energy consumption and to prevent a cavitation. Dynamic balancing is able to help boost the temperature of a room in the start-up period.

Nonisolated Multichannel LED Current Balancing Scheme Using Coupled Inductor and Series Resonant Converter (결합인덕터와 직렬 공진을 이용한 비절연 다중 LED 전류 평형 기법)

  • Shin, Yooyong;Hong, Daheon;Choi, Byungcho;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.249-255
    • /
    • 2021
  • A novel current balancing technique for multichannel light-emitting diode (LED) that uses a series resonance and coupled inductor is proposed in this paper. The proposed LED driver balances output currents through frequency control and enables zero-voltage switching. The proposed converter utilizes the charge balance condition of the resonant capacitor and the current sharing function of the coupled inductor to achieve whole LED current balancing without an additional controller. The proposed coupled inductor can integrate the current balancing function and the resonant inductor, so the power density can be increased by reducing the number of magnetic devices. A 40 W prototype is built to verify the validity of this LED driver, and the experimental results are successfully obtained.

Optimized Energy Cluster Routing for Energy Balanced Consumption in Low-cost Sensor Network

  • Han, Dae-Man;Koo, Yong-Wan;Lim, Jae-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1133-1151
    • /
    • 2010
  • Energy balanced consumption routing is based on assumption that the nodes consume energy both in transmitting and receiving. Lopsided energy consumption is an intrinsic problem in low-cost sensor networks characterized by multihop routing and in many traffic overhead pattern networks, and this irregular energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of maximizing network lifetime through balancing energy consumption for uniformly deployed low-cost sensor networks. We formulate the energy consumption balancing problem as an optimal balancing data transmitting problem by combining the ideas of corona cluster based network division and optimized transmitting state routing strategy together with data transmission. We propose a localized cluster based routing scheme that guarantees balanced energy consumption among clusters within each corona. We develop a new energy cluster based routing protocol called "OECR". We design an offline centralized algorithm with time complexity O (log n) (n is the number of clusters) to solve the transmitting data distribution problem aimed at energy balancing consumption among nodes in different cluster. An approach for computing the optimal number of clusters to maximize the network lifetime is also presented. Based on the mathematical model, an optimized energy cluster routing (OECR) is designed and the solution for extending OEDR to low-cost sensor networks is also presented. Simulation results demonstrate that the proposed routing scheme significantly outperforms conventional energy routing schemes in terms of network lifetime.

Transformer Design Methodology to Improve Transfer Efficiency of Balancing Current in Active Cell Balancing Circuit using Multi-Winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로에서 밸런싱 전류 전달 효율을 높이기 위한 변압기 설계 방안)

  • Lee, Sang-Jung;Kim, Myoung-Ho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2018
  • This paper proposes a transformer design of a direct cell-to-cell active cell balancing circuit with a multi-winding transformer for battery management system (BMS) applications. The coupling coefficient of the multi-winding transformer and the output capacitance of MOSFETs significantly affect the balancing current transfer efficiency of the cell balancing operation. During the operation, the multi-winding transformer stores the energy charged in a specific source cell and subsequently transfers this energy to the target cell. However, the leakage inductance of the multi-winding transformer and the output capacitance of the MOSFET induce an abnormal energy transfer to the non-target cells, thereby degrading the transfer efficiency of the balancing current in each cell balancing operation. The impacts of the balancing current transfer efficiency deterioration are analyzed and a transformer design methodology that considers the coupling coefficient is proposed to enhance the transfer efficiency of the balancing current. The efficiency improvements resulting from the selection of an appropriate coupling coefficient are verified by conducting a simulation and experiment with a 1 W prototype cell balancing circuit.

Analysis of the Cell Balancing Effect on the ESS Fire by Simulating the Euljiro 3-ga Subway ESS (을지로 3가 지하철 ESS를 모의한 ESS 화재에서 Cell Balancing이 미치는 영향성 분석)

  • Yun, Sang-Sun;Kee, Seok-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2020
  • Given the change in the energy market, large energy storage systems (ESS) is rapidly entering the market. In this rapid spread, fire accidents are becoming an issue. This study attempts to approach the fire from the system point of view to analyze the problems caused by bonding from different perspectives. Moreover, to conduct this study, the fabrication of real objects is dangerous, which needs to be verified through simulation. In this study, we approach the cause of fire that occurs in large-capacity ESS from the system perspective. We focus on determining the effects of cell balancing performed on the BMS after charging. Thus, we analyze the cell balancing behavior and the linkage risks to the various stacks. The study also explores why no fire occurs during 70% operation.

Generation of Robotic Assembly Aequences with Consideration of Line Balancing Using a Simulated Annealing (조립라인의 밸런싱을 고려한 자동 조립 순서 추론)

  • Hong, Dae-Seon;Jo, Hyeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.112-118
    • /
    • 1995
  • In designing assembly lines, it is required that the lines should not only meet the demand of the product, but also minimize the assembly cost associated with the line. For such a purpose, numerous research efforts have been made on either the assembly sequence generation or the assembly line balancing. However, the works dealing with both the research problems have been seldom reported in literature. When assembly sequences are generated without consideration of line balancing, additional cost may be incurred, because the sequences may not guarantee the minimum number of workstations. Therefore, it is essential to consider line balancing in the generation of cost-effective assembly sequences. To incorporate the two research problems into one, this paper treats a single-model and deterministic (SMD) assembly line balancing (ALB) problem, and proposes a new method for generating line-balanced robotic assembly sequences by using a simulated annealing. In this method, an energy function is derived in consideration of the satisfaction of assembly constraints, and the minimization of both the assembly cost and the idle time. Then, the energy function is iteratively minimized and occasionally perturbed by the simulated annealing. When no further change in energy occurs, an assembly sequence with consideration of line balancing is finally found. To show the effectiveness of the proposed scheme, a case study for an electrical relay is presented.

  • PDF

Avoiding Energy Holes Problem using Load Balancing Approach in Wireless Sensor Network

  • Bhagyalakshmi, Lakshminarayanan;Murugan, Krishanan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1618-1637
    • /
    • 2014
  • Clustering wireless sensor network is an efficient way to reduce the energy consumption of individual nodes in a cluster. In clustering, multihop routing techniques increase the load of the Cluster head near the sink. This unbalanced load on the Cluster head increases its energy consumption, thereby Cluster heads die faster and create an energy hole problem. In this paper, we propose an Energy Balancing Cluster Head (EBCH) in wireless sensor network. At First, we balance the intra cluster load among the cluster heads, which results in nonuniform distribution of nodes over an unequal cluster size. The load received by the Cluster head in the cluster distributes their traffic towards direct and multihop transmission based on the load distribution ratio. Also, we balance the energy consumption among the cluster heads to design an optimum load distribution ratio. Simulation result shows that this approach guarantees to increase the network lifetime, thereby balancing cluster head energy.

Load Unbalancing Scheduling Method for Energy-Efficient Multi-core Embedded Systems (에너지 효율적인 멀티코어 임베디드 시스템을 위한 부하 불균형 스케줄링 방법)

  • Choi, YoungJin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • We proposed a load unbalancing scheduling method for energy-efficient multi-core embedded systems considering DVFS (Dynamic Voltage/Frequency Scaling) power consumption and task characteristics. It is a new kind of scheduler which combines load balancing and load unbalancing technique. The purpose of the method is to effectively utilize energy without much effect in performance. In this paper, we conduct experiments on energy consumption and performance using the previous load balancing and unbalancing techniques and our proposed technique. The proposed technique reduced energy consumption more than 13.7% when compared to other algorithms. As a result, the proposed technique shows low energy consumption without much decline in the performance and is adequate for energy-efficient multi-core embedded systems.

Balancing Energy and Memory Consumption for Lifetime Increase of Wireless Sensor Network (무선 센서 네트워크의 수명 연장을 위한 에너지와 메모리의 균형 있는 소모 방법)

  • Kim, Tae-Rim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.361-367
    • /
    • 2014
  • This paper introduces balancing energy and memory consumption for lifetime increase of wireless sensor network. In cluster-based wireless sensor network, sensor nodes adjacent of cluster heads have a tendency to deplete their own battery energy and cluster heads occupy memory space significantly. If the nodes close to region where events occur frequently consume their energy and memory fully, network might be destroyed even though most of nodes are still alive. Therefore, it needs to balance network energy and memory with consideration of event occurrence probability so that network lifetime is increased. We show a method of balancing wireless sensor network energy and memory to organize cluster groups and elect cluster heads in terms of event occurrence probability.