• Title/Summary/Keyword: Energy Balance Equation

Search Result 160, Processing Time 0.028 seconds

Determination of Energy Requirements for Maintenance in Hanwoo Steers (거세한우의 유지에너지 요구량 결정)

  • Kim, K.H.;Oh, Y.G.;Kim, W.;Lee, S.C.;Shin, K.J.;Jeon, B.T.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.193-200
    • /
    • 2004
  • This experiment was carried out to determine energy requirements for maintenance of Hanwoo steers. Nine Hanwoo steers weighing 376.6$\pm$12.5kg were used in this experiment and fed rice straw(44%) and concentrate (56%) at three different energy levels; 0.8 times maintenance(0.8M), 1.2 times(1.2M) and 1.6 times(1.6M), respectively. Dry matter intake was 48.5, 65.9 and 86.5g/$BW^{0.75}$ for 0.8M, 1.2M and 1.6M, respectively. Increase in energy intake with the increased DM intake did not affect digestibilities of dry matter, organic matter, crude protein, crude fiber, crude fat and nitrogen-free extract. Gross energy intake averaged 190.8, 255.8 and 340.9kcal/BW0.75 for 0.8M, 1.2M and 1.6M, respectively. Energy loss was 41% feces and 0.6${\sim}$1.5% urine of gross energy intake. Further, energy loss from methane produced during rumen fermentation was 5${\sim}$9%, while body heat loss averaged 40${\sim}$60%. Intercept of the regression equation between ME intake and retained energy indicated that energy requirement for maintenance was 124.3kcal $ME/BW^{0.75}$.

A study on the development of simulation program for the small naturally aspirated four-stroke diesel engine (소형 4행정사이클 무과급 디이젤 기관의 성능 시뮤레이션 전산프로그램의 개발에 관한 연구)

  • 백태주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.17-36
    • /
    • 1984
  • Since 1973, the competition on the development of fuel saving type internal combustion engines has become severe by the two times oil shock, and new type engines are reported every several months. Whenever these new type engines are developed, new designs are required and they will be offered in the market after performing the endurance test for a long time. But the engine market is faced with a heavy burden of finance, as the developing of a new engine requires tremendous expenses. For this reason, the computer simulation method has been lately developed to cope with it. The computer simulation method can be available to perform the reasonable research works by the theoretical analysis before carrying out practical experiments. With these processes, the developing expenses are cut down and the period of development is curtailed. The object of this study is the development of simulation computer program for the small naturally aspirated four-stroke diesel engine which is intended to product by the original design of our country. The process of simulation is firstly investigated for the ideal engine cycle, and secondly for the real engine cycle. In the ideal engine cycle, each step of the cycle is simulated by the energy balance according to the first law of thermodynamics, and then the engine performance is calculated. In the real cycle imulation program, the injection rate, the preparation rate and the combustion rate of fuel and the heat transfer through the wall of combustion chamber are considered. In this case, the injection rate is supposed as constant through the crank angle interval of injection and the combustion rate is calculated by the Whitehouse-Way equation and the heat transfer is calculated by the Annand's equation. The simulated values are compared with measured values of the YANMAR NS90(C) engine and Mitsubishi 4D30 engine, and the following conclusions are drawn. 1. The heat loss by the exhaust gas is well agree with each other in the lower load, but the measured value is greater than the calculated value in the higher load. The maximum error rate is about 15% in the full load. 2. The calculated quantity of heat transfer to the cooling water is greater than the measured value. The maximum error rate is about 11.8%. 3. The mean effective pressure, the fuel consumption, the power and the torque are well agree with each other. The maximum error is occurred in the fuel consumption, and its error rate is about 7%. From the above remarks, it may be concluded that the prediction of the engine performance is possibly by using the developed program, although the program needs to reform by adding the simulation of intake and exhaust process and assumping more reliable mechanical efficiency, volumetric efficiency, preparation rate and combustion rate.

  • PDF

Transpiration Modelling and Verification in Greenhouse Tomato (온실재배 토마토의 증산모델 개발 및 검증)

  • 이변우
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.205-215
    • /
    • 1997
  • An accurate transpiration model for greenhouse tomato crop, which is liable to transpiration depression and yield loss because of low solar radiation and high humidity, could be an efficient tool for the optimum control of greenhouse climate and for the optimization of Irrigation scheduling. The purpose of this study was to develop transpiration model of greenhouse tomato and to carry out the experimental verification. The formulas to calculate the canopy transpiration and temperature simultaneously were derived from the energy balance of canopy. Transpiration and microclimate variables such as net radiation, solar radiation, humidity, canopy and air temperature, etc. were simultaneously measured to estimate parameters of model equations and to verify the suggested model. Leaf boundary layer resistance was calculated as a function of Nusselt number and stomatal diffusive resistance was parameterized by solar radiation and leaf-air vapor pressure deficit. The equation for stomatal diffusive resistance could explain more than 80% of its variation and the calculated stomatal diffusive resistance showed good agreements with the measured values in situations independent of which the constants of the equation were estimated. The canopy net radiation calculated by Stanghellini's model with slight modification agreed well with the measured values. The present transpiration model, into which afore-mentioned component equations were assembled, was found to predict the canopy temperature, instantaneous and daily transpiration with considerable accuracy in greenhouse climates.

  • PDF

Prediction of Propylene/Propane Separation Behavior of Na-type Faujasite Zeolite Membrane by Using Gravimetric Adsorption (중량식흡착 거동에 기초한 Na형 Faujasite 제올라이트 분리막의 프로필렌/프로페인 분리 거동 예측 연구)

  • Hwang, Juyeon;Min, Hae-Hyun;Park, You-In;Chang, Jong-San;Park, Yong-Ki;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.432-443
    • /
    • 2018
  • In this study, propylene/propane separation behavior of Na-type faujasite zeolite membranes is predicted by observing gravimetric adsorptions of propylene and propane on zeolite 13X. The gravimetric adsorptions were measured by using a magnetic suspension balance (MSB) at temperatures of 323, 343, 363 K and a pressure range of 0.02-1 bar. The pressure was increased at 0.1 bar intervals. As adsorption temperature increased, adsorptions of propylene and propane decreased and propylene/propane adsorption selectivity increased. Also, the diffusion coefficients of propylene and propane were increased as the adsorption temperature increased, following the Arrhenius equation. The maximum propylene/propane diffusion selectivity was 0.9753 at 323 K. The perm-selectivity was calculated from the adsorption data of zeolite 13X and compared with the perm-selectivity measured in the single gas permeation experiment for the Na-type faujasite zeolite membrane. The maximum values for the calculated and measured perm-selectivities were observed at a temperature of 323 K. It could be concluded that the prediction of propylene/propane separation of surface diffusion-based membrane by using gravimetric adsorption data is reasonable. Therefore, it is expected that this prediction method can be applied to the screening of adsorption-based microporous membrane for propylene/propane separation.

Estimation of Surface Fluxes Using Noah LSM and Assessment of the Applicability in Korean Peninsula (Noah LSM을 이용한 지표 플럭스 산정 및 한반도에서의 적용성 검토)

  • Jang, Ehsun;Moon, Heewon;Hwang, Seok Hwan;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.509-518
    • /
    • 2013
  • Understanding of the exchange between the water and energy which is happening between the surface and atmosphere is the basic of studying water resources. To study these, lots of researches using Noah Land Surface Model(LSM) are in progress. Noah LSM is based on energy and water balance equation and simulates various hydrological factors. There are diverse researches with Noah LSM are ongoing in overseas, on the other hand not enough study has been done. Especially there is almost no study using uncoupled Noah LSM in Korea. In this study we used data from Korea Flux Tower in Haenam(HFK) and Gwangneung(GDK) as forcing data to simulate the model and compared its result of net radiation, sensible heat flux and latent heat flux with the observation data to assess the applicability of Noah LSM in Korea. Regression coefficients of the comparison results of Noah LSM and observation show good agreement with the value of 0.83~0.99 at Haenam and 0.64~0.99 at Gwangneung which means Noah LSM can be trusted.

Study of nutritional status and management of lactating dairy COWS using analysed milk composition (유 성분 분석을 통한 젖소 영양상태 및 개체관리에 관한 연구)

  • Lee, Sung-mo;Kim, Dong-won;Choi, Byung-ryul;Seo, Kang-moon;Hong, Chong-hae
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.243-252
    • /
    • 2001
  • Milk constituents and somatic cell count (SCC) were analysed for 4,059 milk samples from 178 dairy farms from April to December in 1999. Correlations among each milk constituents, milk urea (MU) concentration and SCC in association with lactation stage, milk yield and parity, and balancing status of nutrients' supplies were analysed, and the results are summarized as follows; Averages of milk fat percent, total solids percent and milk yield were $3.72{\pm}0.91%$, $12.50{\pm}1.31%$ and $23.80{\pm}8.54kg$, respectively, whereas those were significantly lower during the summer season. In contrast, average of MU concentration was $0.0361{\pm}0.0006%$ which was significantly higher during the summer season. With milk yield, concentrations of fat, protein and SCC in milk decreased but concentrations of lactose and urea in milk and body condition score (BCS) were not altered. Concentrations of fat, protein, lactose, total solids, SNF, and urea in milk were significantly affected by stage of lactation ($P{\leq}0.0001$) but SCC was not changed. Parity of dairy cows had a significant effect on concentrations of fat ($P{\leq}0.02$), lactose ($P{\leq}0.0001$), total solids ($P{\leq}0.002$), and SNF ($P{\leq}0.0001$) in milk and milk yield ($P{\leq}0.0005$) but did not change concentrations of urea and protein in milk. Somatic cell count had significant positive correlationship with percentages of fat, protein and total solids ($P{\leq}0.0001$), respectively, but had negative correlationship with percentages of urea and lactose in milk and milk yield ($P{\leq}0.0001$). Milk urea concentration was negatively correlated with concentrations of protein, fat, total solids, and SNF in milk and milk yield ($P{\leq}0.0001$) and, according to regression analysis using milk urea concentration and SCC, following equation was obtained; $Y(MU)=3.688{\times}10^{-2}-4.04{\times}10^{-7}{\times}X(SCC{\times}1,000)(r^2=0.0038$, $P{\leq}0.0001$). We studied balance between protein and energy supplies to dairy cows in each farm based upon milk urea and protein concentrations, and results showed that 137 of total 178 farms fed cows unbalanced amounts of dietary protein and energy.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.

A Study on the Safety Improvement in a Venting System from the HCl Release Accident of a Petrochemical Company (석유화학공장의 염화수소 누출사고를 통한 대기벤트 시스템의 안전성 향상 방안)

  • Ma, Byung-Chol;Lee, Keun-Won;Im, Ji-Pyo;Kim, Young-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.38-43
    • /
    • 2012
  • The purpose of this study is to carry out the consequence analysis of an accident related to the release of Hydrogen chloride occurred in a petrochemical company in Korea and suggest the measures to prevent similar accidents from happening again. The total amount released through the safety valve of HCl Column was calculated based on the rated capacity of the safety valve, the ideal gas equation and mechanical energy balance, respectively. As a result of the calculation, we found that the amount of HCl released through the safety valve was at least 76.8 kg. Also, we predicted the dispersion concentration at the position of the injured workers(more than 350 m away from the accident location) using simulation programs such as PHAST. The results of ALOHA and K-CARM are 304 ppm and 1,700 ppm respectively. However, PHAST calculation indicated that the concentration is less than l ppm. From these results, we can understand that workers were injured by HCl gas released from the safe valve and the concentration of gas might be less than 1 ppm. Also, it is important for toxic gases such as HCl to be vented safely to the atmosphere after scrubbing.

An analytical study on the thermal performance of multi-tube CO2 water heater (다중관형 CO2 급탕열교환기의 열적성능에 대한 해석연구)

  • Chang, Keun Sun;Choi, Youn Sung;Kim, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.23-30
    • /
    • 2016
  • In this study, the heat transfer and pressure drop characteristics were evaluated for multi-tube $CO_2$ water heaters with lengths of 4.5 m and 7.5 m. The evaluation was done using the -NTU method, and the results were compared with experimental data. Water flows through the shell side of the water heater, while $CO_2$ flows through 8 inner tubes. The heater uses a counter-current design to maximize the heat transfer efficiency. The energy balance equation describing the flows of $CO_2$ and water for each node is set up using the section-by-section method. The calculated heat transfer rates agree well with the experimental data within ${\pm}5%$ error. The outlet water temperature decreased linearly with the increase of the water flow rate. The calculated heat transfer rates agreed well with the experimental data within ${\pm}3%$ error. The results show that the heat transfer rate increases almost linearly with the increase of water flow rate or $CO_2$ inlet temperature in both the 4.5-m and 7.5-m water heaters, whereas the water outlet temperature linearly decreases with the increase of the water flow rate. The comparison of the $CO_2$ pressure drop between the calculation and experiment results shows good agreement at the high $CO_2$ flow rate within 5 % error, but the value is about 20 % higher in the experimental pressure drop at the low $CO_2$ flow rate.