• 제목/요약/키워드: Energy/electron transfer

검색결과 306건 처리시간 0.037초

The role of chemical bond as the preparation of polynuclear metal dendritic molecule for PDD or PDT

  • Choi, Chang-Shik
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.391-393
    • /
    • 2022
  • The preparation of polynuclear metal dendritic molecule for photodynamic diagnosis(PDD) or photodynamic therapy(PDT) has been interested on design and synthesis of metal-to-metal long ranged macromolecule. Herein, imine bond or amide bond as chemical bond is an important role on the construction of energy transfer or electron transfer system. Therefore, we will be presented on the role of chemical bond for the preparation of polynuclear metal dendritic molecule.

  • PDF

이온주입에 의한 고분자(Polyphenylene Sulfide)표면 특성 변화와 선에너지전달(Pineal Energy Transfer)과의 관계 (The Relation Among the Linear Energy Transfer and Changes of Polyphenylene Sulfide Surface by ion Implantation)

  • 이재상;김보영;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.407-413
    • /
    • 2005
  • Ion implantation provides a unique way to modify the mechanical, optical and electrical properties of polymer by depositing the energy of ions in the material on the atomic scale. Implantation of ions into the polymers generally leads to a radiation damage, which, in many cases, modifies the properties of the surface and bulk of the material. These modifications result from the changes of the chemical structure caused in their turn by changing the chemical bonding when the incident ions cut the polymer chains, breaks covalent bonds, promotes cross-linking, and liberates certain volatile species. We studied the relation among the linear energy transfer (LET) and changes of surface microstructure and surface resistivity on PPS material using the high current ion implantation technology The surface resistivity of nitrogen implanted PPS decreased to $10^{7}{\Omega}/cm^{2}$ due to the chain scission, cross linking, ${\pi}$ electron creation and mobility increase. In this case, the surface conductivity depend on the 1-dimensional hopping mechanism.

혼합 발광층을 이용한 백색 전계발광소자의 발광특성 (White Light-Emitting Electroluminescent Device with a Mixed Single Emitting Layer Structure)

  • 김주승;서부완;구할본;조재철;박복기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.606-609
    • /
    • 1999
  • We fabricated white light-emitting diode which have a mixed single emitting layer containing poly(N-vinylcarbazole), trois(8-hydroxyquinoline)aluminum and poly(3-hexylthiophene) and investigated the emission properties of it. It is possible to obtain a blue light from poly(N-vinylcarbazole). green light from tris(8-hydroxyquinoline)aluminum and red light from poly(3-hexylthiophene). The fabricated device emits white light with slight orange light. We think that the energy transfer in a mixed layer occurred from PVK to Alq₃ and P3HT resulted in decreasing the blue light intensity from PVK. We find that the efficiency of the white light electroluminescent device can be improved by injecting electron more effectively and blue light need to improve the color purity of white light.

  • PDF

In-situ XPS Study of Core-levels of ZnO Thin Films at the Interface with Graphene/Cu

  • Choi, Jinsung;Jung, Ranju
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1546-1549
    • /
    • 2018
  • We have investigated core-levels of ZnO thin films at the interface with the graphene on Cu foil using in-situ X-ray Photoelectron Spectroscopy (XPS). Spectral evolution of C 1s, Zn 2p, and O 1s are observed in real time during RF sputtering deposition. We found binding energy (BE) shifts of Zn 2p and 'Zn-O' state of O 1s depending on ZnO film thickness. Core-levels BE shifts of ZnO will be discussed on the basis of electron transfer at the interface and it may have an important role in the electronic transport property of the ZnO/graphene-based electronic device.

High Resolution Patternning for Graphene Nanoribbons (GNRs) Using Electro-hydrodynamic Lithography

  • Lee, Su-Ok;Kim, Ha-Nah;Lee, Jae-Jong;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.198-198
    • /
    • 2012
  • Graphene has been the subject of intense study in recent years owing to its good optoelectronic properties, possibility for stretchable electronics, and so on. Especially, many research groups have studied about graphene nanostructures with various sizes and shapes. Graphene needs to be fabricated into useful devices with controllable electrical properties for its successful device applications. However, this been far from satisfaction owing to a lack of reliable pattern transfer techniques. Photolithography, nanowire etching, and electron beam lithography methods are commonly used for construction of graphene patterns, but those techniques have limitations for getting controllable GNRs. We have developed a novel nanoscale pattern transfer technique based on an electro-hydrodynamic lithography providing highly scalable versatile pattern transfer technique viable for industrial applications. This technique was exploited to fabricate nanoscale patterned graphene structures in a predetermined shape on a substrate. FE-SEM, AFM, and Raman microscopy were used to characterize the patterned graphene structures. This technique may present a very reliable high resolution pattern transfer technique suitable for graphene device applications and can be extended to other inorganic materials.

  • PDF

Ab initio Studies on Acene Tetramers: Herringbone Structure

  • Park, Young-Hee;Yang, Ki-Yull;Kim, Yun-Hi;Kwon, Soon-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1358-1362
    • /
    • 2007
  • The structures, energetics and transfer integrals of the acene tetramers up to pentacene are investigated with the ab initio molecular orbital method at the level of second-order Møller-Plesset perturbation theory (MP2). Calculated geometries for the herringbone-style structures found in the crystal structure were characterized as local minima, however the geometrical discrepancy between crystal and MP2 theoretical structure is reasonably small. The binding energy of pentacene tetramer was calculated up to 40 kcal/mol (MP2/6-31G(d)) and about 90 kcal/mol (MP2/aug-cc-pVDZ), and the latter seems to be too much overestimated. The tendency of the hole transfer integrals computed with ab initio MP2/3-21G(d) geometry is well agreement with those estimated with crystal structure with some discrepancy, and the gradual increment of the transfer integrals at the crystal geometry is attributed to mainly packing structure rather than the intrinsic property of acene such as a size of acene.

실리카가 코팅된 양자점의 코팅두께에 따른 광 특성 변화 (The Synthesis and Optical Properties of Silica Coated CdSe/ZnS QDs)

  • 이지혜;신현호;이종흔;현상일;구은회
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.221-226
    • /
    • 2013
  • The water soluble quantum dots (QDs) are synthesized by the phase transfer and silica coating reaction. The photoluminescence intensity of silica-coated QDs are mainly affected by the amount of phase transfer agent, SDS (sodium dodecyl sulfate), and the maximum value is obtained at the cmc (critical micell concentration) concentration of SDS in the phase transfer reaction. Based on fluorescence spectra and field emission transmission electron microscope (FETEM), the energy transfer rate by forster resonance energy transfer (FRET) is increasing with the thickness of the silica shell coated on CdSe/ZnS QDs.

Enhancement of DNA-mediated Energy Transfer from Ethidium to meso-Tetrakis(N-methylpyridinium-4-yl)porphyrin by Ca2+ Ion

  • Kim, Jong-Moon;Park, Bo-Ra-Mi;Kim, Young-Rhan;Gong, Lindan;Jang, Myung-Duk;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1165-1169
    • /
    • 2012
  • The fluorescence intensity of DNA-intercalated ethidium with [ethidium]/[DNA base] being 0.005 was quenched upon the binding of another intercalating ligand, meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP). Addition of $Ca^{2+}$ enhanced the quenching efficiency. The range of separations between donor and acceptor molecules, within which total quenching occurs, was calculated using a one-dimensional resonance energy transfer mechanism to be 9.5 base-pairs or $32.3{\AA}$ in the absence of $Ca^{2+}$ ions. The distance increased to 18.7 base-pairs or about $63.6{\AA}$ in the presence $100{\mu}M$ $Ca^{2+}$. Considering that (1) $Ca^{2+}$ had little effect on the binding modes of ethidium and TMPyP, which was investigated by reduced linear dichroism and (2) spectral overlap between the emission spectrum of ethidium and the absorption spectrum of TMPyP was maintained in the presence of $Ca^{2+}$, contributions from orientation factor and spectral overlap to $Ca^{2+}$-induced enhancement in DNA mediated energy transfer was limited. Although there is no direct evidence, electron transfer along the DNA stem may accompany the observed fluorescence quenching. In this respect, DNA bound $Ca^{2+}$ act as a partially conducting medium.

전자 주입층 $Cs_2CO_3$ 두께 변화에 따른 OLED의 효율에 미치는 영향 (Effect on Efficiency of the OLED depending on Thickness Variation of EIL $Cs_2CO_3$)

  • 한현석;김창훈;강용길;김귀열;김태완;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1438-1439
    • /
    • 2011
  • In this paper, we studied effects on the efficiency, according to thickness of the electron injection layer(EIL) for improving efficiency of Organic Light Emitting Diodes(OLEDs). For the first time, after confirming the optimum thickness of the EIL material $Cs_2CO_3$, we designed OLED devices having a structure of ITO/TPD/$Alq_3/Cs_2CO_3$/Al. And we manufactured devices applying for the optimum thickness of the material in the simulation with thermal evaporating method. And we investigated how the EIL material $Cs_2CO_3$ effects on efficiency of OLEDs in the EIL. As the result, because the EIL material $Cs_2CO_3$ reduces energy potential barrier of the EIL, it facilitated the electron transfer. And, as blocking the hole transfer contributes to an increased recombination, we confirmed that the efficiency of OLEDs increased. And compared to the device without using the EIL material, the device using thickness 1.0 nm of $Cs_2CO_3$ in the EIL shows the excellent efficiency. Therefore, we confirmed that the luminance and the external quantum efficiency increase about 600% and 500% respectively.

  • PDF