• Title/Summary/Keyword: Energetic Materials

Search Result 176, Processing Time 0.026 seconds

Polynigrogen Energetic Materials (폴리나이트로젠 에너지물질)

  • Lee, Junwung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.319-329
    • /
    • 2016
  • Current research trends of prediction of possible structures, synthesis and explosive characteristics of polynitrogen molecules(PNs) are reviewed. Theoretically PNs are composed only of nitrogen atoms, in which N-N bonds are either single or double bonds, and thus when these molecules decompose, release of enormous energy is accompanied. From the middle of 20th century energetic material chemists have been seeking possible structures and the methods of synthesis of these new materials. As a results, from $N_4$ to $N_{60}$ together with their ions are predicted, and experimental chemists have been trying to synthesize these materials with a few success, including the famous ${N_5}^+$ ion in 1999. Although experimental successes are very rare beyond $N_5$ until today, the author believes that renovative ideas together with sincere efforts will bring someday next generation of high energy materials such as nitrogen fullerene($N_{60}$) in reality.

INVESTIGATION OF ENERGETIC DEPOSITION OF Au/Au (001) THIN FILMS BY COMPUTER SIMULATION

  • Zhang, Q. Y.;Pan, Z. Y.;Zhao, G. O.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.183-189
    • /
    • 1998
  • A new computer simulation method for film growth, the kinetic Monte Carlo simulation in combination with the results obtained from molecular dynamics simulation for the transient process induced by deposited atoms, was developed. The behavior of energetic atom in Au/Au(100) thin film deposition was investigated by the method. The atomistic mechanism of energetic atom deposition that led to the smoothness enhancement and the relationship between the role of transient process and film growth mechanism were discussed. We found that energetic atoms cannot affect the film growth mode in layer-by-layer at high temperature. However, at temperature of film growth in 3-dimensional mode and in quasi-two-dimensional mode, energetic atoms can enhance the smoothness of film surface. The enhancement of smoothness is caused by the transient mobility of energetic atoms and the suppression for the formation of 3-dimensional islands.

  • PDF

Application of Supercritical Fluid in Energetic Materials Processes (화약제조 공정의 초임계 유체 응용)

  • Song, Eun-Seok;Kim, Hwa-Yong;Kim, Hyoun-Soo;Lee, Youn-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2006
  • Micro- or nano-size particles are required to improve the combustion efficiency and stability in the case of solid explosives and propellants. The micro-structural properties of an energetic material strongly influence the combustion and explosion behavior. However, the traditional size reduction techniques, including milling, are not suitable for production of ultra-fine size particles. As an alternative to the traditional techniques, various re-crystallization processes based on supercritical fluids have recently been proposed. Supercritical fluids are fluids at temperatures and pressures above their critical point. In principle, they do not give problems of solvent contamination as they are completely released from the solute when the decompression occurs. Rapid Expansion Supercritical Solutions(RESS) and Supercritical Anti-Solvent Process(GAS/SAS) are representatives of a nano-size particle formation process of energetic materials using supercritical fluids. In this work, various fine particle formation processes using supercritical fluids are discussed and the results are presented.

An Efficient Synthesis of GUDN as Green Oxidizer (친환경 산화제 GUDN의 효율적 합성)

  • Sul, Min-Jung;Joo, Young-Hyuk;Jeong, Won-Bok;Park, Young-Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.97-104
    • /
    • 2013
  • N-Guanylurea dinitramide (GUDN) is an energetic material with low sensitivities and good performance for use as propellants or insensitive munitions explosives. The efficient synthesis and characterization of high energy density material of GUDN is reported. GUDN was characterized spectroscopically as well as elemental analysis. In addition, the heats of formation were calculated with the Gaussian 09 suite of programs. For initial safety testing, the impact sensitivity and the friction sensitivity were tested following BAM procedure.

How to Prepare the Manuscript for Submission to the Proceedings of KSPE Conference (고에너지 물질 연소를 기반으로 한 Multi Physics Modeling)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.238-241
    • /
    • 2007
  • We present an innovative method of multi-physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, hish temperature, strong non-linear shock waves, and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that makes it suitable for high strain-rate multi-material interaction problems. Furthermore we eliminate the possible interface smearing by using the level sets. We have devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress applications of our algorithm including the Taylor impact test, explosive venting and additional confined explosion problems of modem interest.

  • PDF

Innovative Modeling and Simulation of Reacting Flow with Complex Confined Boundaries

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.311-319
    • /
    • 2008
  • We present an innovative method of multi physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, high temperature, strong shock waves and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that make it suitable for high strain rate multi-material interacting problems. Furthermore we eliminate the possible interface smearing by using the level sets. We heave devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress application of our integrated framework.

  • PDF

Study of energetic materials using phase change and interface theory (상 변화와 인터페이스 이론을 이용한 고에너지물질의 반응연구)

  • Kim, Ki-Hong;Kim, Hak-Jun;Kim, Hyoung-Won;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.60-63
    • /
    • 2008
  • Phase change in combustion of energetic materials happens inevitably. The product gas generated by combustion is at extreme temperature and pressure state. The interaction between a gas and metal generates high strain rate deformation and complex wave phenomena. In order to perform combustion simulation containing phase changes, we develop an elegant model for phase change and provide a proof of performance via vapor explosion example.

  • PDF

Quantum-chemical Investigation of Substituted s-Tetrazine Derivatives as Energetic Materials

  • Ghule, Vikas D.;Sarangapani, Radhakrishnan;Jadhav, Pandurang. M.;Tewari, Surya. P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.564-570
    • /
    • 2012
  • s-Tetrazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores the design of s-tetrazine derivatives in which different $-NO_2$, $-NH_2$ and $-N_3$ substituted azoles are attached to the tetrazine ring via C-N linkage. The density functional theory (DFT) is used to predict the geometries, heats of formation (HOFs) and other energetic properties. The predicted results show that azide group plays a very important role in increasing HOF values of the s-tetrazine derivatives. The densities for designed molecules were predicted by using the crystal packing calculations. The introduction of $-NO_2$ group improves the density as compared to $-N_3$, and $-NH_2$ groups and hence the detonation performance. Bond dissociation energy analysis and insensitivity correlations revealed that amino derivatives are better candidates considering insensitivity and stability.

Surface Modification of High Energetic Materials by Molecular Self-assembly (자기조립법을 이용한 고에너지물질의 표면개질 연구)

  • Kim, Ja-Young;Jeong, WonBok;Shin, Chae-Ho;Kim, Jin-Seok;Lee, Keundeuk;Lee, Kibong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Self-assembly of organic molecules is formed spontaneously on surfaces by electrostatic interaction with substrate. This research has shown that the self-assembly improves safety and handling tractability of high-energetic materials (HEMs). According to the recent study, control of the specific crystal size for reducing the internal defects is mightily important, because the internal defects are a factor in unstability of HEMs. In turn, we performed self-assembly of organic molecules and HEMs by using nano-sized HEMs, which were produced by drowing-out or milling/crystallization. Surface modification efficiency was decided by size distribution, zeta-potential, friction sensitivity and electrostatic charge.