• Title/Summary/Keyword: Endotoxin gene cloning

Search Result 3, Processing Time 0.015 seconds

Cloning of a Hemolytic Mosquitocidal Delta-endotoxin Gene (cyt) of Bacillus thuringiensis 73E10-2 (serotype 10) into Bacillus subtilis and Characterization of the cyt Gene Product

  • Kim, Kwang-Hyeon;Ohba, Michio;Kim, Byung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.326-330
    • /
    • 1996
  • To illustrate whether a hemolysin in $\delta$-endotoxins of Bacillus thuringiensis strain 73E10-2 and subsp. israelensis had immunological identity, a cyt gene of the strain 73E10-2 which encodes a hemolysin was cloned to B. subtilis (transformant 2753). The transformant 2753 containing cyt gene produced the hemolysin which lysed sheep erythrocytes after treatment of proteinase K. The hemolysin was proved also to be toxic against mosquito larvae (Aedes aegypti). The molecular weight of the hemolysin produced from the transformant 2753 was determined to be about 25 kDa by SDS-PAGE and immunoblot. The hemolysin in $\delta$-endotoxin of subsp. israelensis and subsp. kyushensis did not react on immunoblot using polyclonal anti-$\delta$-endotoxin of the strain 73E10-2, but 70-140 kDa mosquitocidal toxins in $\delta$-endotoxin of subsp. kyushuensis reacted.

  • PDF

Transfer of Insecticidal Toxin Gene in Plants:Cloning of Insecticidal Protein Gene in Bacillus thuringiensis (식물세포에 살충독소 유전자의 전이: Bacillus thuringiensis 살충단백질 유전자의 클로닝)

  • 이형환;황성희;박유신
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.647-652
    • /
    • 1990
  • The production of delta-endotoxin crystal and the cloning of endotoxin protein gene in Bscillus thuringiensis subsp. kurstaki HD1 strain were studied. The strain produced bipyramidal crystals ($2.9\times 1.0 \mu m$) in their cells during sporulation. The B. thuringiensis contained about 10 plasmid DNA elements ranging from 2.1 to 80 kilobases. The 73 kb plasmid DNA, the 29 kb BamHI fragment and the 7.9 kb Pstl DNA fragment hybridized to the pHL probe. The 7.9 kb fragment was eluted and cloned in the PstI site of pBR322 vector and transformed into E. coli HB101, which produced insecticidal proteins killing Bornbyx mori larvae.

  • PDF

Cloning and Expression of Bacillus thuringiensis crylAa1 Type Gene. (Bacillus thuringiensis crylAa1 Type Gene의 클로닝과 발현)

  • 이형환;황성희;권혁한;안준호;김혜연;안성규;박수일
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.110-116
    • /
    • 2004
  • The over-expression in E. coli of the pHLN1-SO(+) and pHLN2-80(-) plasmids cloned an insecticidal crystal protein (ICP) gene (crylAal type) from Bacillus thuringiensis var. kurstaki HD 1 was investigated through in part, the deletion of -80 bp promoter and an alternative change of cloning vector system. Two recombinant plasmids were constructed in an attempt to analyze the over-expression of the ICP in relations to its gene structure possessing only -14 bp [Shine-Dalgarno (SD) sequence of -80 bp promoter]. Also, anther two recombinant plasmids similarly cloned the icp gene in a different vector system. The amounts of ICP produced from the recombinants were measured by SDS-PAGE and confirmed by Western blot analysis. One clone, pHLRBS1-14 clone in which only the SD sequence in the inverted orientation icp gene appeared, was more evident than the pHLRBS2-14 clone in which only the -14 bp SD sequence of the right orientated icp gene was shown to exist. The pHLN2-80(-) clone produced more ICP proteins than the pHLRBS1-14 clone. In the two clones, pHLNUC1-80 right-oriented icp gene and the pHLNUC2-80 clone inverted-orientation icp gene in a new different vector, the pHLNUC2-80 produced more ICP proteins in E. coli system. These results indicate that the P/ac promoter, the inverted icp gene insertion and -80 bp promoter (-66 bp part of the icp gene promoters), were concerned with the expression of the icp gene in the recombinant plasmids. In addition, the expression mechanism might result from the disruption of the transcription-suppressing regions in the promoter regions.