• 제목/요약/키워드: Endotoxemia

검색결과 46건 처리시간 0.028초

Fucoidan Enhances the Survival and Sustains the Number of Splenic Dendritic Cells in Mouse Endotoxemia

  • Ko, Eun-Ju;Joo, Hong-Gu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권2호
    • /
    • pp.89-94
    • /
    • 2011
  • Fucoidan is a sulfated polysaccharide derived from brown algae that has been reported to perform multiple biological activities, including immunostimulation. In this study, we investigated whether fucoidan has beneficial effects on endotoxemia induced by LPS, a septic model in mice. The focus of this study was on survival rates and spleen function of the mice upon treatment. We found that fucoidan had prophylactic effects on the survival rate of mice with endotoxemia. Flow cytometric analysis using antibodies for subset-specific markers revealed that fucoidan profoundly reversed the depleted population of dendritic cells in mice with endotoxemia. According to Western blot analysis, the spleen cells of LPS/fucoidan-treated mice showed a higher expression of anti-apoptotic molecules compared to those of LPS-treated mice. Also, fucoidan-treated spleen cells were more responsive to mitogens. Taken together, these results demonstrate that fucoidan pre-treatment has beneficial effects on the survival rate and function of the spleen in mice with endotoxemia. This study may broaden the use of fucoidan in clinical fields, especially endotoxemia.

Comparative Study of the Endotoxemia and Endotoxin Tolerance on the Production of Th Cytokines and Macrophage Interleukin-6: Differential Regulation of Indomethacin

  • Chae, Byeong-Suk
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.910-916
    • /
    • 2002
  • Endotoxin tolerance reduces the capacity of monocytes to produce proinflammatory cytokines, results in cellular immune paralysis, and down-regulates the production of helper T (Th)1 type cytokines with a shift toward a Th2 cytokine response. Prostaglandin (PG)E$_2$ in the immune system also results in macrophage inactivation and the suppression of Th1 activation and the enhancement of Th2 activation. However, the inhibitory effects of PGE$_2$ on the altered polarization of the Th cell and macrophage interleukin (IL)-6 production characterized in part by cellular immune paralysis in a state of endotoxin tolerance is unclear. This study was undertaken, using indomethacin, to investigate the role of endogenous PGE$_2$ on the Th cytokines and macrophage IL-6 production in a state of endotoxin tolerance compared to those with endotoxemia mice, wherein, in this latter case, the increased production of proinflammatory cytokines and PGE$_2$ is exhibited. Endotoxemia was induced by injection of lipopolysaccharide (LPS; 10 mg/kg in saline) i.p. once in BALB/c mice, and endotoxin tolerance was induced by pretreatment with LPS (1 mg/kg in saline) injected i.p. daily for two consecutive days and then with LPS 10 mg/kg on day 4. Splenocytes or macrophages were obtained from endotoxemia and endotoxin tolerance models pretreated with indomethacin, and then cytokine production was induced by Con A-stimulated splenocytes for the Th cytokine assays and LPS-stimulated macrophages for the IL-6 assay. Our results showed that endotoxemia led to significantly reduced IL-2 and IL-4 production, to significantly increased IL-6 production, whereas interferon $(IFN)-{\gamma}$ production was not affected. Indomethacin in the case of endotoxemia markedly attenuated $IFN-{\gamma}$ and IL-6 production and didnt reverse IL-2 and IL-4 production. Endotoxin tolerance resulted in the significantly reduced production of IL-2 and $IFN-{\gamma}$ and the significantly increased production of IL-4 and IL-6. Indomethacin in endotoxin tolerance greatly augmented IL-2 production, significantly decreased IL-4 production, and slightly attenuated IL-6 production. These findings indicate that endogenous PGE$_2$ may mediate the suppressed Th1 type immune response, with a shift toward a Th2 cytokine response in a state of endotoxin tolerance, whereas endotoxemia may be regulated differentially. Also, endogenous PGE$_2$ may mediate macrophage IL-6 production in the case of endotoxemia to a greater extent than in the case of endotoxin tolerance.

Kinetics of HMGB1 level changes in a canine endotoxemia model

  • Yu, Do-Hyeon;Park, Jinho
    • 대한수의학회지
    • /
    • 제51권3호
    • /
    • pp.239-241
    • /
    • 2011
  • In this study, we investigated the kinetics of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6 and high mobility group box 1 (HMGB1) concentrations in a 48-h model of canine endotoxemia by lipopolysaccharide (LPS) injection. Four healthy beagles were slowly administered 1 mg/kg of LPS diluted in normal saline, while two others were administered normal saline as controls. Blood collection was performed at 0 h (baseline), 1 h and 3 h (for TNF-${\alpha}$), 6 h, 12 h, 24 h and 48 h of the experiment, and cytokine levels were determined using the sandwich ELISA method. Early increments of TNF-${\alpha}$ and IL-6 were observed (< 3 h), but HMGB1 levels increased the most at 12 h of the experiment and gradually decreased until 48 h. During the whole experiment, IL-6 and HMGB1 were sustained over 12 h of LPS injection, whereas TNF-${\alpha}$ decreased within 6 h of LPS injection. Taken together, canine HMGB1 levels increase relatively late (< 12 h) and sustained longer than TNF-${\alpha}$ and IL-6 in response to endotoxin. This is the first study to evaluate canine HMGB1 cytokine from endotoxemia in dogs.

Role of Kupffer Cells in Vasoregulatory Gene Expression During Endotoxemia

  • Kim, Tae-Hoon;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.306-311
    • /
    • 2008
  • Although hepatic microcirculatory dysfunction occurs during endotoxemia, the mechanism responsible for this remains unclear. Since Kupffer cells provide signals that regulate hepatic response in inflammation, this study was designed to investigate the role of Kupffer cells in the imbalance in the expression of vasoactive mediators. Endotoxemia was induced by intraperitoneal E. coli endotoxin (LPS, 1 mg/kg body weight). Kupffer cells were inactivated with gadolinium chloride ($GdCl_3$, 7.5 mg/kg body weight, intravenously) 2 days prior to LPS exposure. Liver samples were taken 6 h following LPS exposure for RT-PCR analysis of mRNA for genes of interest: endothelin (ET-1), its receptors $ET_A$ and $ET_B$, inducible nitric oxide synthase (iNOS), heme oxygenase (HO-1), and tumor necrosis factor-$\alpha$ (TNF-$\alpha$). mRNA levels for iNOS and TNF-$\alpha$ were significantly increased 31.8-fold and 26.7-fold in LPS-treated animals, respectively. This increase was markedly attenuated by $GdCl_3$, HO-1 expression significantly increased in LPS-treated animals, with no significant difference between saline and $GdCl_3$ groups. ET-1 was increased by LPS. mRNA levels for $ET_A$ receptor showed no change, whereas $ET_B$ transcripts increased in LPS-treated animals. The increase in $ET_B$ transcripts was potentiated by $GdCl_3$. We conclude that activation of Kupffer cells plays an important role in the imbalanced hepatic vasoregulatory gene expression induced by endotoxin.

생물전환을 통한 음나무발효물의 LPS에 대한 경쟁적 억제제 효과 및 내독소혈증 억제 효과 (The Inhibitory Effect of Fermented Kalopanax pictus by Bioconversion on Endotoxemia and the Competitive Inhibitor Activity on LPS)

  • 김성필;이화영;인수아;성은영;김진만;남석현
    • 한국식품영양학회지
    • /
    • 제32권2호
    • /
    • pp.106-113
    • /
    • 2019
  • The objective of this study was to evaluate the effect of fermented Kalopanax pictus (KP-F) on macrophage activation and its effect as a competitive inhibitor of LPS and inhibitory effect on endotoxemia. The results showed that KP-F could activate macrophage in a dose-dependent manner, and KP-F was confirmed to act as a ligand for TLR4. Also, it was found that KP-F did not exhibit the same biotoxicity as LPS in intraperitoneal injection, and that it could suppress the neutrophil migration induced by LPS administration. In normal mice, the body weight, tissue weight, and amount of nitrite and pro-inflammatory cytokines in serum showed no significant changes with KP-F diet for 2 weeks, confirming that administration of KP-F in normal mice did not lead to over activation of immune response and biotoxicity. In the mouse model of endotoxemia induced by LPS and D-galactosamine(D-GalN) in sub-lethal dose, the diet of KP-F effectively inhibited the amount of nitrite and cytokines in the blood, and thus was found to be able to relieve the hepatic and kidney injury. In addition, in the endotoxemia mouse model induced by LPS and D-GalN of lethal dose, the survival rate was increased by KP-F diet in a dose-dependent manner.

Expression of Hepatic Vascular Stress Genes Following Ischemiai/Reperfusion and Subsequent Endotoxemia

  • Kim, Sung-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.769-775
    • /
    • 2004
  • Hepatic ischemia and reperfusion (l/R) predisposes the liver to secondary stresses such as endotoxemia, possibly via dysregulation of the hepatic microcirculation secondary to an imbalanced regulation of the vascular stress genes. In this study, the effect of hepatic I/R on the hepatic vasoregulatory gene expression in response to endotoxin was determined. Rats were subjected to 90 min of hepatic ischemia and 6 h of reperfusion. Lipopolysaccharide (LPS, 1 mg/kg) was injected intraperitoneally after reperfusion. Plasma and liver samples were obtained 6 h after reperfusion for serum aminotransferase assays and RT-PCR analysis of the mRNA for the genes of interest: endothelin-1 (ET-1), its receptors $ET_A$ and $ET_B$, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), heme oxygenase-1 (HO-1), cyciooxygenase-2 (COX-2), and tumor necrosis factor-a (TNF-${\alpha}$). The activities of serum aminotransferases were significantly increased in the I/R group. This increase was markedly potentiated by LPS treatment. The ET-1 mRNA was increased by LPS alone, and this increase was significantly greater in both the I/R alone and I/R + LPS groups compared to the sham. There were no significant differences in ETA receptor mRNA levels among any of the experimental groups. $ET_B$ mRNA was increased by both LPS alone and I/R alone, with no significant difference between the I/R alone and I/R + LPS groups. The eN OS and HO-1 transcripts were increased by I/R alone and further increased by I/R + LPS. The iNOS mRNA levels were increased by I/R alone, but increased significantly more by both LPS alone and I/R + LPS compared to I/R alone. The TNF-${\alpha}$ mRNA levels showed no change with I/R alone, but were increased by both LPS alone and I/R + LPS. The COX-2 expression was increased significantly by I/R alone and significantly more by I/R + LPS. Taken collectively, significantly greater induction of the vasodilator genes over the constriction forces was observed with I/R + LPS. These results may partly explain the increased susceptibility of ischemic livers to injury as a result of endotoxemia.

Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia

  • Krishnan, Manigandan;Choi, Joonhyeok;Choi, Sungjae;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.25-32
    • /
    • 2021
  • Inflammatory reactions activated by lipopolysaccharide (LPS) of gram-negative bacteria can lead to severe septic shock. With the recent emergence of multidrug-resistant gram-negative bacteria and a lack of efficient ways to treat resulting infections, there is a need to develop novel anti-endotoxin agents. Antimicrobial peptides have been noticed as potential therapeutic molecules for bacterial infection and as candidates for new antibiotic drugs. We previously designed the 9-meric antimicrobial peptide Pro9-3 and it showed high antimicrobial activity against gram-negative bacteria. Here, to further examine its potency as an anti-endotoxin agent, we examined the anti-endotoxin activities of Pro9-3 and elucidated its mechanism of action. We performed a dye-leakage experiment and BODIPY-TR cadaverine and limulus amebocyte lysate assays for Pro9-3 as well as its lysine-substituted analogue and their enantiomers. The results confirmed that Pro9-3 targets the bacterial membrane and the arginine residues play key roles in its antimicrobial activity. Pro9-3 showed excellent LPS-neutralizing activity and LPS-binding properties, which were superior to those of other peptides. Saturation transfer difference-nuclear magnetic resonance experiments to explore the interaction between LPS and Pro9-3 revealed that Trp3 and Tlr7 in Pro9-3 are critical for attracting Pro9-3 to the LPS in the gram-negative bacterial membrane. Moreover, the anti-septic effect of Pro9-3 in vivo was investigated using an LPS-induced endotoxemia mouse model, demonstrating its dual activities: antibacterial activity against gram-negative bacteria and immunosuppressive effect preventing LPS-induced endotoxemia. Collectively, these results confirmed the therapeutic potential of Pro9-3 against infection of gram-negative bacteria.

Hepa1c1c-7 Cell에서 리포폴리사카라이드로 유도된 염증성 매개인자 생산에 있어서 코르티코스테론 전처리 효과 (Effect of Corticosterone Pretreatment on the Production of LPS-Induced Inflammatory Mediators in Hepa1c1c-7 Cells)

  • 채병숙
    • 약학회지
    • /
    • 제60권1호
    • /
    • pp.8-14
    • /
    • 2016
  • Endotoxemia induces production of inflammatory mediators and acute phase proteins, leading to multiorgan injury and systemic inflammation. Hypothalamic-pituitary-adrenal (HPA) axis activation and glucocorticoids (GCs) release modify endotoxemia-induced inflammatory responses. In the present study, we investigated whether pre-exposure of GCs influences endotoxin-induced production of inflammatory mediators in hepatocytes. Hepa1c1c-7 cells were pretreated with low concentrations of corticosterone for 24 h and then cultured without corticosterone in the presence or absence of LPS. Our results demonstrated that LPS alone significantly enhanced production of IL-6 and CRP but reduced vascular endothelial growth factor (VEGF) compared to controls. Combination of corticosterone pretreatment and LPS significantly upregulated production of IL-6, IL-$1{\beta}$, and VEGF but downregulated CRP compared to those in LPS alone. These findings suggest that in low concentration of corticosterone-preexposed hepatocytes, endotoxemia may induce upregulation of IL-6, IL-$1{\beta}$, VEGF and but downregulation of CRP.

내독소혈증 유발 급성폐손상에서 폐장내 Proinflammatory Cytokines 발현에 관한 고찰 (The Lung Expression of Proinflammatory Cytokines, TNF-$\alpha$ and Interleukin 6, in Early Periods of Endotoxemia)

  • 문승혁;김용훈;박춘식;이신제
    • Tuberculosis and Respiratory Diseases
    • /
    • 제45권3호
    • /
    • pp.553-564
    • /
    • 1998
  • 연구배경: LPS에 대한 숙주의 초기반응은 proin-flammatory cytokines의 분비이다. 이러한 "초기 반응" cytokines는 인지세포에서 표적세포 등에 신호를 전달하여 다른 대식세포를 포함한 면역세포, 폐장내 간엽성 세포들을 자극하여 화학주성인자, 성장인자, 유착분자 등의 발현을 증폭시키게 되면서 전염증단계가 정열하게된다. 내독소유발 급성폐손상에서 폐장내 proinflammatory cytokine 기원 세포들은 활성화된 대식세포/단핵구 외에 폐조직으로 유입된 동원 호중구의 역할이 중요하게 인식되고 있으며 이외에도 간엽성 세포들에서도 발현되고 있는 것으로 밝혀지고 있다. 저자들은 실험 백서에서 내독소를 정백내 주입하여 유발시킨 급성폐손상에서 proinflammatory cytokines인 TNF-$\alpha$ 및 IL 6 기원의 주된 세포(들)를 규명해 보고자 하였다. 방 법: 체중 $250{\pm}50g$의 건강체인 웅성 Sparague-Dawley를 정상 대조군(Normal Control Saline Group)과 내독소유발 급성폐손상군으로 분류하였으며 급성폐손상군은 백혈구결핍 내독소군(CPA-ETX Group)과 대조-내독소군(ETX Group)으로 하였다. 실험백서를 phenthotal sodium으로 마취한 후 생리식염수 0.4ml(control) 혹은 동량의 생리식염수에 용해시킨 LPS (055 : B5 E. coli, Sigma Chemical Co., St. Louis, MO), 5mg/kg를 백서 미부정맥으로 주사한 후 각각 0 및 3, 6 시간에 회생시켰다. 백혈구결핍 내독소군은 cyclophophamide, 7mg/kg를 복강내 주입하여 5 일째에 LPS를 같은 방법으로 주입하여 3, 6시간에 각각 희생시켰다. 각군에서 기관지폐포세척술을 전술한 바와 같이 시행하여 총백혈구수, 분획세포수 및 총단백량을 산출하였고 기관지폐포세척 TNF-$\alpha$ 및 IL 6를 생물학적 방법으로 각각 측정하여 비교하였다. 동시에 기관지폐포세척술을 하지 않은 정상대조군 및 대조-내독소군에서 TNF-$\alpha$ 및 IL 6 단백에 대한 면역조직화학염색을 시행하였다. 결 과: 기관지폐포세척 세포 및 단백량 측정 결과 정상대조군에 비해 대조-내독소군에서 기관지폐포세척 총백혈구수는 3, 6 시간째에 각각 유의한 증가를 보였으나 (p<0.01), 백혈구결핍 내독소군과는 차이가 없었다. 대조-내독소군은 정상대조군에 비해 기관지폐포세척단핵구 및 호중구수가 3, 6 시간째에 각각 유의하게 증가하였으며 (p<0.05) 특히 호중구 분획율의 유의한 증가를 동반하였다(p<0.05). 백혈구결핍 내독소군은 정상대조군에 비해 3, 6시간째에 각각 기관지폐포세척 호중구수 및 호중구분획율의 유의한 감소를 보였으나 (p<0.05) 기관지폐포세척 단핵구수 및 단핵구 분획율에서는 양군간에 차이가 없었다. 기관지폐포세척 총단백량은 내독소군에서 3, 6시간째에 각각 정상대조군에 비해 유의한 증가를 보였으며(p<0.05) 내독소군간에는 6시간째에 대조-내독소군에서 백혈구결핍 내독소군에 비해 유의하게 높았다(p<0.05). 기관지폐포세척 TNF-$\alpha$ 및 IL-6의 농도는 정상대조군에서 각각 $0.06{\pm}0.06$ U/ml(n=5) 및 $0.45{\pm}0.23$ U/ml(n=5)이었다. 내독소군에서 TNF-$\alpha$와 IL-6는 정상대조군에 비해 유의하게 상승되었으며 (p<0.05), 백혈구결핍 내독소군과 대조-내독소군간에 차이는 없었다. 면역조직화학염색결과 내독소 정맥 주입 3시간 및 6시간후의 폐조직에서 TNF-$\alpha$ 및 IL-6 단백이 폐포대식세포와 간질대식세포들에서 강하게 염색되는 소견을 관찰할 수 있었다. 결 론: 내독소혈증 유발 급성 폐손상의 초기 손상에 중요한 역할을 하는 proinflammatory cytokine의 주된 기원세포는 활성화된 폐포대식세포/단핵구세포들일 것으로 사료되며 이들 세포가 내독소혈증 유발 급성폐손상 발생에 주도적인 역할을 할 것으로 사료되었다.

  • PDF