• Title/Summary/Keyword: Endothelial seeding

Search Result 10, Processing Time 0.027 seconds

Blood Compatibility of Artificial Blood-Contacting Surface Seeded with Cultured Bovine Endothelial Cells (소폐동맥 내피세포를 이용한 인조혈액접촉표면의 혈액 접합성)

  • 김원곤;곽영태;유세영
    • Journal of Chest Surgery
    • /
    • v.26 no.2
    • /
    • pp.80-85
    • /
    • 1993
  • Synthetic and biosynthetic vascular grafts of small diameter have long been considered to be prone to thrombosis, ultimately leading to the complete graft occlusion. Endothelial cell seeding onto synthetic blood-contacting surfaces has been suggested to be an ideal means to solve this problem. This study described a culture method of bovine endothelial cells and evaluated blood-compatibility and seeding efficiency of cultured endothelial cells. Bovine pulmonary artery endothelial cells were harvested enzymatically and grown to confluence on polystyrene culture flask surfaces using established techniques. The identification of endothelial cells was made through the demonstration of expression of factor VIII R:Ag by immunofluorescent technique. To quantitate the effect of improvement in blood-compatibility of viable endothelial cells, endothelial monolayers were exposed to blood containing $\^$111/In-oxine labeled platelets. Viable endothelial monolayers retained less labeled platelets than control surfaces. The Indium-labeled endothelial cells were seeded onto three different blood-contacting surfaces of Dacron vascular graft immobilized in specially equipped wells and incubated for specific time intervals (t=15, 30, 60, 120 minutes). Longer incubation times showed improved cell adherence in collagen-coated and fibrin-coated Dacron vascular graft groups. However in untreated Dacron grafts, no direct relationship was observed between incubation time and endothelial cell seeding efficiency. This may be due to leakage of endothelial cells through porosity of Dacron grafts in this in-vitro experimental condition.

  • PDF

Endothelial Cell Seeding Onto the Extracellular Matrix of Fibroblasts for the Developement of Small Diameter Polyurethane Vessel (소구경 폴리우레탄 인공혈관의 개발을 위한 세포외기질위의 혈관내피세포 배양)

  • 박동국;이윤신
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • A variety of experiments of endothelial cell seeding onto artificial vessels have been performed. To improve endothelialization, one or two components of the extracellular matrix (ECM) have been used as an underlying matrix. In this study, the whole ECM excreted from fibroblasts was used as an underlying matrix. Fetal human fibroblasts were cultured on a polyurethane (PU) sheet. After a conflu; ence was attained, the cytoskeleton and the nuclei of the fibroblast were destroyed using Triton-X. Mitomycin, or irradiation. Omental microvascular endothelial cells from adult human were seeded onto various substrates. After 12 days in culture, the cells were counted. It was observed that the ECM treated by irradiation had the highest cell number. In addition, the cells on this substrate exhibited the most typical endothelial cell morphology. For preliminary animal experiments the PU vessels (inner diameter, 1.5mm) coated with ECM were implanted in the infrarena] abdominal aorta of rat. After the vessels had been implanted for 5 weeks, it was found that the surface of the PU vessels was completely covered with endothelia] cells. In conclusion, we can state that the fibroblast-derived whole ECM makes a better underlying substrate for the endothelialization of small diameter artificial vessels.

  • PDF

Evaluation of Endothelial Cell Attachment on Polymer Surface (고분자 표면의 혈관내피세포 부착력에 관한 연구)

  • Choi, Jin-Wook;Ryu, Gyu-Ha;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.131-140
    • /
    • 1990
  • To improve antithrombogenicity of polymer that used in vascular graft and artificial organs, seeding of human endothelial cells on the polyurethane was studied. Human endothelial cells were ismlated from human umbilical veins, using type I collagenase, and identified with goat anti vWF antibodies. Human endothilial cell seeding was tried upon the polyurethane which has good mechanical property and resists stresses. The hydrophobic polyurethane surface was changed hydrophilic by corona discharf:e treatment. Surface hydrophilicity was measured with Wilhemly plate method and the goniometer. To evaluate matrix protein adsorption, fibronectin adsorption test was done. To eveluate cell adhesion, human endothelial cell attachment forces were measured rising a perfusion chamber of , ism diamter. Less cells were detached from the hydrophilically treated polyurethane. This showed that corona discharge on the polyurethane could improve matrix adsorption and endothelial cell attachment.

  • PDF

Endothelial Cell Seeding onto Extracellular Matrix for Development of Polyurethane Vascular Prosthesis (폴리우레탄 인공혈관을 위한 extracellular matrix 기질상의 내피세포이식)

  • Lee, Yoon-Shin;Park, Dong-Kook;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.165-170
    • /
    • 1991
  • Many experiments about endothelial cell seeding on artificial vessels were studied and conducted For this one or a combination of the extramatrix was used for the underlying matrix. But we used the whole ECM(extracellular matrix) that made excreated from flbroblasl. In thls study, we obtained human adult omental microvascular endothelium by collagenase digestion and used polyurthane sheets in order to make a new artificial vessel material. We cultured fibroblast on the polyurethane and gelatin - coated polyurethane. After confluent ingrowth we treated the polyure thane with triton in order to destroy the cytoskeleton and nucleus. We observed the preformed extra cellular matrix on the ployurethane and cultured the isolated microvascular endothelium. We also ok served the growth of microvascular endothelium on the polyurethane and gelatin. We conclude that the use of the whole ECM is promising fair as a new underying substrate for endothelial cell seeding on artificial vessels.

  • PDF

Retention of Endothelial Cells adhered on Polyurethane Surface under Flow Condition

  • Chang, Jun-Keun;Chang, Hyun-A;Kim, Jin-Hee;Kim, Jong-Won;Han, Dong-Chul;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.355-364
    • /
    • 1996
  • Construction of the stable monolayer of endothelial cells onto physicochemically modified polymeric surFace is one of the appropriate method to develop the small caliber vascular graft with the long-term patency. In this study, we constructed the monolayer of endothelial cells on the fibronectin rind the extracellular matrix-coated polyurethane surface derived from human fibroblast cells. To elucidate the adhesion strength of endothelial cells on the extracellular matrix-coated polyurethane, a laminar flow chamber apparatus was developed to exposure the shear stress on the apical membrane of ondothelial cells. Endothelial cells show the strongest adhesion after two days of seeding onto the fibronectin-coated polyurethane surface, whereas endothelial cells on the extracellular matrix derived from the human flbroblast cells show the minimal doubling time of cellular growth.

  • PDF

Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an In Vitro Model of the Blood-brain Barrier

  • Harris, Sarina G.;Shuler, Michael L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • The blood-brain barrier (BBB) is composed of the brain capillaries, which are lined by endothelial cells displaying extremely tight intercellular junctions. Several attempts at creating an in vitro model of the BBB have been met with moderate success as brain capillary endothelial cells lose their barrier properties when isolated in cell culture. This may be due to a lack of recreation of the in vivo endothelial cellular environment in these models, including nearly constant contact with astrocyte foot processes. This work is motivated by the hypothesis that growing endothelial cells on one side of an ultra-thin, highly porous membrane and differentiating astrocyte or astrogliomal cells on the opposite side will lead to a higher degree of interaction between the two cell types and therefore to an improved model. Here we describe our initial efforts towards testing this hypothesis including a procedure for membrane fabrication and methods for culturing endothelial cells on these membranes. We have fabricated a 1 $\mu\textrm{m}$ thick, 2.0 $\mu\textrm{m}$ pore size, and 55% porous membrane with a very narrow pore size distribution from low-stress silicon nitride (SiN) utilizing techniques from the microelectronics industry. We have developed a base, acid, autoclave routine that prepares the membranes for cell culture both by cleaning residual fabrication chemicals from the surface and by increasing the hydrophilicity of the membranes (confirmed by contact angle measurements). Gelatin, fibronectin, and a 50/50 mixture of the two proteins were evaluated as potential basement membrane protein treatments prior to membrane cell seeding. All three treatments support adequate attachment and growth on the membranes compared to the control.

Biocompatibility of Tissue-Engineered Heart Valve Leaflets Based on Acellular Xenografts (세포를 제거한 이종 심장 판막 이식편을 사용한 조직공학 심장 판막첨의 생체 적합성에 대한 연구)

  • 이원용;성상현;김원곤
    • Journal of Chest Surgery
    • /
    • v.37 no.4
    • /
    • pp.297-306
    • /
    • 2004
  • Current artificial heart valves have several disadvantages, such as thromboembolism, limited durability, infection, and inability to grow. The solution to these problems would be to develop a tissue-engineered heart valves containing autologous cells. The aim of this study was to optimize the protocol to obtain a porcine acellular matrix and seed goat autologous endothelial cells on it, and to evaluate the biological responses of xenograft and xeno-autograft heart valves in goats. Material and Method: Fresh porcine pulmonic valves were treated with one method among 3 representative decellularization protocols (Triton-X, freeze-thawing, and NaCl-SDS). Goat venous endothelial cells were isolated and seeded onto the acellularized xenograft leaflets. Microscopic examinations were done to select the most effective method of decellularizing xenogeneic cells and seeding autologous endothelial cells. Two pulmonic valve leaflets of. 6 goats were replaced by acellularized porcine leaflets with or without seeding autologous endothelial cells while on cardiopulmonary bypass. Goats were sacrificed electively at 6 hours, 1 day, 1 week, 1 month, 3 months, and 6. months after operation. Morphologic examinations were done to see the biological responses of replaced valve leaflets. Result: The microscopic examinations showed that porcine cells were almost completely removed in the leaflets treated with NaCl-SDS. The seeded endothelial cells were more evenly preserved in NaCl-SDS treatment. All 6 goats survived the operation without complications. The xeno- autografts and xenografts showed the appearance, the remodeling process, and the cellular functions of myofibroblasts, 1 day, 1 month, and 3 months after operation, respectively. They were compatible with the native pulmonary leaflet (control group) except for the increased cellularity at 6 months. The xenografts revealed the new endothelial cell lining at that time. Conclusion: Treatment with NaCl-SDS was most effective in obtaining decellularized xenografts and facilitate seeding autologous endothelial cells. The xenografts and xeno-autografts were repopulated with myofibroblasts and endothelial cells in situ serially. Both of grafts served as a matrix for a tissue engineered heart valve and developed into autologous tissue for 6 months.

Affinity of Endothelial Cells to a Polyurethane Vascular Graft: A Preliminary Animal Study (폴리우레탄 인공혈관에 대한 혈관내피세포의 친화성: 예비동물실험)

  • Ahn, Seung Hyun;Jun, Young min;Chang, Hak;Park, Chung Hee;Minn, Kyung Won
    • Archives of Plastic Surgery
    • /
    • v.36 no.4
    • /
    • pp.380-384
    • /
    • 2009
  • Purpose: Autologous vessels remain the gold standard for vascular grafts in microanastomoses. However, they are sometimes unavailable and have a limited long - term patency. Synthetic vessels have high success rates in large - diameter reconstructions but failed when used as small - diameter grafts due to graft occlusion. It has been proved that endothelial cell seeding improves prosthesis performance and long - term patency. Among polyurethane, PET and ePTFE, polyurethane has the best affinity to endothelial cells and mechanical properties closest to human vessels. We examined the ability of endothelial cells to attach to a polyurethane graft manufactured by the electrospinning method. Methods: Endothelial cells, which were cultured from porcine internal jugular veins, were attached to polyurethane grafts with an internal diameter of 3 mm. The same cells were attached to allogeneic decellularized porcine internal carotid artery grafts as controls. Both of the 10 mm - long grafts were exposed to endothelial cells in a well for 1 hour. Each well contained $2{\times}10^5$ endothelial cells. The graft materials were rotated through 90 degrees every 15 minutes in order to minimize the effect of gravity. The extent of cell attachment was examined with the MTT assay. Results: The MTT assay showed good incorporation of endothelial cells into both grafts. For the evaluation of affinity, the number of attached cells was counted at 10 fields of microscopic examination with ${\times}40$ magnification. Endothelial cells adhered more to polyurethane grafts (mean, $127.4{\pm}6.2cells$) compared to porcine artery grafts (mean $45.8{\pm}5.1cells$)(p<0.05,Mann - Whitney test). Conclusion: In this study, we attached porcine endothelial cells to polyurethane grafts, manufactured by electrospinning. The grafts exhibited a better affinity to endothelial cells than allogeneic decellularized porcine internal carotid artery grafts. It is suggested that the time required for endothelial cells to attach to decellulized artery grafts may be longer than that which is required for attachment to polyurethane grafts.

No-Touch Radiofrequency Ablation of VX2 Hepatic Tumors In Vivo in Rabbits: A Proof of Concept Study

  • Kim, Tae-Hyung;Choi, Hyoung In;Kim, Bo Ram;Kang, Ji Hee;Nam, Ju Gang;Park, Sae Jin;Lee, Seunghyun;Yoon, Jeong Hee;Lee, Dong Ho;Joo, Ijin;Lee, Jeong Min
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1099-1109
    • /
    • 2018
  • Objective: In a proof of concept study, we compared no-touch radiofrequency ablation (NtRFA) in bipolar mode with conventional direct tumor puncture (DTP) in terms of local tumor control (LTC), peritoneal seeding, and tumorigenic factors, in the rabbit VX2 subcapsular hepatic tumor model. Materials and Methods: Sixty-two rabbits with VX2 subcapsular hepatic tumors were divided into three groups according to the procedure: DTP-RFA (n = 25); NtRFA (n = 25); and control (n = 12). Each of the three groups was subdivided into two sets for pathologic analysis (n = 24) or computed tomography (CT) follow-up for 6 weeks after RFA (n = 38). Ultrasonography-guided DTP-RFA and NtRFA were performed nine days after tumor implantation. LTC was defined by either achievement of complete tumor necrosis on histopathology or absence of local tumor progression on follow-up CT and autopsy. Development of peritoneal seeding was also compared among the groups. Serum hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) were measured via ELISA (Elabscience Biotechnology Co.) after RFA for tumorigenic factor evaluation. Results: Regarding LTC, there was a trend in NtRFA (80%, 20/25) toward better ablation than in DTP-RFA (56%, 14/25) (p = 0.069). Complete tumor necrosis was achieved in 54.5% of DTP-RFA (6/11) and 90.9% of NtRFA (10/11). Peritoneal seeding was significantly more common in DTP-RFA (71.4%, 10/14) than in NtRFA (21.4%, 3/14) (p = 0.021) or control (0%). Elevations of HGF, VEGF or IL-6 were not detected in any group. Conclusion: No-touch radiofrequency ablation led to lower rates of peritoneal seeding and showed a tendency toward better LTC than DTP-RFA.

Effect of Endothelial Cell Growth Factor and Cyclic AMP Increasers on the Proliferation of Human Omental Microvascular Endothelial Cells (사람의 대망미세혈관내피세포 증식에 대한 내피세포성장인자 및 CYCLIC AMP 증가물질의 효과)

  • Kim, Won-Gon;Kim, Jong-Man;Yu, Se-Yeong
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.463-470
    • /
    • 1995
  • Complete prelining of artificial vascular grafts with autologous endothelial cells may be one of the ideal solutions to obtain a nonthrombogenlc blood-contacting surface. To establish an intact endothelial cell monolayer on a prosthetic surface at the time of implantation,a sufficient number of endothelial cells and adequate propagation condition In cell culture are prerequisites. In this experimental study, endothelial cells from microvessels of adult human oriental adipose tissue were enzymatically harvested, and optimal culture conditions for proliferation of the endothelial cells in cell culture were examined. Human oriental adipose tissue was digested with collagenase and endothelial cells were separated from other stromal elements by mesh filtration method. Cultured cells were identified as endothelial cells by immunofluorescent staining for factor VIII-related antigen. Proliferation in usual 20% fetal bovine serum (FBS) medium or medium containing endothelial cell growth factor (ECGF)(5 ng/ml) and heparin (HEP)(1,000 units/ml) were compared,and the effects of adding compounds that increase intracellular cyclic adenosine monophosphate levels, that is,cholera toxin (CT)(1 $\mu\textrm{g}$/ml) and isobutylmethylxanthine (IBMX)(0.2 ml),were also analyzed. In total,following eight media groups were examined. 1) FBS medium + ECGF + HEP, 2) FBS medium + ECGF + HEP+CT, 3) FBS medium+ECGF+HEP+lBMX, 4) FBS medium+ECGF+HEP+CT+ IBMX, 5) FBSmedium, 6) FBS medium +CT, 7) FBS medium + IBMX, 8) FBS medium + CT + IBMX. It was shown that the medium containing ECGF + HEP with or without cholera toxin was most efficient in Stimulating cell proliferation. IBMX was considered to have antagonistic effect to ECGF. Among experimental groups without ECGF and HEP, the addition of cholera toxin and IBMX was shown to significantly potentiate cell proliferation. This results could provide a practical method for use of cultured human endothelial cells for endothelial cell seeding of cardiovascular prosthetic device, particularly in small-diameter vascular grafts.

  • PDF