• Title/Summary/Keyword: Endothelial blood-barrier

Search Result 43, Processing Time 0.028 seconds

Blood-neural Barrier: Intercellular Communication at Glio-Vascular Interface

  • Kim, Jeong-Hun;Kim, Jin-Hyoung;Park, Jeong-Ae;Lee, Sae-Won;Kim, Woo-Jean;Yu, Young-Suk;Kim, Kyu-Won
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.339-345
    • /
    • 2006
  • The blood-neural barrier (BNB), including blood-brain barrier (BBB) and blood-retinal barrier (BRB), is an endothelial barrier constructed by an extensive network of endothelial cells, astrocytes and neurons to form functional 'neurovascular units', which has an important role in maintaining a precisely regulated microenvironment for reliable neuronal activity. Although failure of the BNB may be a precipitating event or a consequence, the breakdown of BNB is closely related with the development and progression of CNS diseases. Therefore, BNB is most essential in the regulation of microenvironment of the CNS. The BNB is a selective diffusion barrier characterized by tight junctions between endothelial cells, lack of fenestrations, and specific BNB transporters. The BNB have been shown to be astrocyte dependent, for it is formed by the CNS capillary endothelial cells, surrounded by astrocytic end-foot processes. Given the anatomical associations with endothelial cells, it could be supposed that astrocytes play a role in the development, maintenance, and breakdown of the BNB. Therefore, astrocytes-endothelial cells interaction influences the BNB in both physiological and pathological conditions. If we better understand mutual interactions between astrocytes and endothelial cells, in the near future, we could provide a critical solution to the BNB problems and create new opportunities for future success of treating CNS diseases. Here, we focused astrocyte-endothelial cell interaction in the formation and function of the BNB.

Acid sphingomyelinase-mediated blood-brain barrier disruption in aging

  • Park, Min Hee;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.111-112
    • /
    • 2019
  • Although many studies have reported that the breakdown of the blood-brain barrier (BBB) represents one of the major pathological changes in aging, the mechanism underlying this process remains relatively unexplored. In this study, we described that acid sphingomyelinase (ASM) derived from endothelial cells plays a critical role in BBB disruption in aging. ASM levels were elevated in the brain endothelium and plasma of aged humans and mice, resulting in BBB leakage through an increase in caveolae-mediated transcytosis. Moreover, ASM caused damage to the caveolae-cytoskeleton via protein phosphatase 1-mediated ezrin/radixin/moesin dephosphorylation in primary mouse brain endothelial cells. Mice overexpressing brain endothelial cell-specific ASM exhibited acceleration of BBB impairment and neuronal dysfunction. However, genetic inhibition and endothelial specific knock-down of ASM in mice improved BBB disruption and neurocognitive impairment during aging. Results of this study revealed a novel role of ASM in the regulation of BBB integrity and neuronal function in aging, thus highlighting the potential of ASM as a new therapeutic target for anti-aging.

Blood-neural barrier: its diversity and coordinated cell-to-cell communication

  • Choi, Yoon-Kyung;Kim, Kyu-Won
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2008
  • The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.

Primary Culture of Endothelial Cells from Murine Brain Microvessels

  • Lee Sun-Ryung
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.127-130
    • /
    • 2006
  • It is important to coordinated interaction among neurons, astrocytes and endothelial cells to maintain the function of brain. To study their regulatory mechanisms in vitro system, the co-culture system among the isolated cells from brain may be needed. However, the method for purifying brain microvascular endothelial cells (BMEC) far culture have not established yet. In this study, the proper culture methods of mice cells using two different strains, CD1 and C57BL6, to obtain the pure and plentiful endothelial cells were described. The flatted-round forms of CD1 endothelial cells grew on the collagen-IV coating plates, while the purified cells from C57 mice preferred type collagen-I dishes for their growth. Both cells displayed anti-PECAM-1 (CD31) and von Willebrand Factor immune-reactivity. These results indicated that different coating materials not only improve attachment of isolated cells but also promoting growth of cells, suggesting that this method of purifying murine Brain microvascular endothelial cells (BMEC) provides a suitable model to investigate blood-brain-barrier (BBB) properties within neurovascular unit in vitro.

  • PDF

Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an In Vitro Model of the Blood-brain Barrier

  • Harris, Sarina G.;Shuler, Michael L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • The blood-brain barrier (BBB) is composed of the brain capillaries, which are lined by endothelial cells displaying extremely tight intercellular junctions. Several attempts at creating an in vitro model of the BBB have been met with moderate success as brain capillary endothelial cells lose their barrier properties when isolated in cell culture. This may be due to a lack of recreation of the in vivo endothelial cellular environment in these models, including nearly constant contact with astrocyte foot processes. This work is motivated by the hypothesis that growing endothelial cells on one side of an ultra-thin, highly porous membrane and differentiating astrocyte or astrogliomal cells on the opposite side will lead to a higher degree of interaction between the two cell types and therefore to an improved model. Here we describe our initial efforts towards testing this hypothesis including a procedure for membrane fabrication and methods for culturing endothelial cells on these membranes. We have fabricated a 1 $\mu\textrm{m}$ thick, 2.0 $\mu\textrm{m}$ pore size, and 55% porous membrane with a very narrow pore size distribution from low-stress silicon nitride (SiN) utilizing techniques from the microelectronics industry. We have developed a base, acid, autoclave routine that prepares the membranes for cell culture both by cleaning residual fabrication chemicals from the surface and by increasing the hydrophilicity of the membranes (confirmed by contact angle measurements). Gelatin, fibronectin, and a 50/50 mixture of the two proteins were evaluated as potential basement membrane protein treatments prior to membrane cell seeding. All three treatments support adequate attachment and growth on the membranes compared to the control.

Activation of Matrix Metalloproteinases-9 after Photothrombotic Spinal Cord Injury Model in Rats

  • Jang, Jae-Won;Lee, Jung-Kil;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.4
    • /
    • pp.288-292
    • /
    • 2011
  • Objective : Matrix metalloproteinases (MMPs), especially MMP-2 and MMP-9 have been known to play an important role in secondary inflammatory reaction after spinal cord injury (SCI). The aim of this study was to investigate the expression and activity of MMP-2 and MMP-9 and to determine their relationship with disruption of endothelial blood-barrier after photochemically induced SCI in rats. Methods : Female Sprague-Dawley rats, weighing between 250 and 300 g (aged 8 weeks) received focal spinal cord ischemia by photothrombosis using Rose Bengal. Expressions and activities of MMP-2 and MMP-9 were assessed by Western blot and gelatin zymography at various times from 6 h to 7 days. Endothelial blood-barrier integrity was assessed indirectly using spinal cord water content. Results : Zymography and Western blot analysis demonstrated rapid up-regulation of MMP-9 protein levels in spinal cord after ischemic onset. Expressions and activities of MMP-9 showed a significant increased at 6 h after the photothrombotic ischemic event, and reached a maximum level at 24 h after the insult. By contrast, activated MMP-2 was not detected at any time point in either the experimental or the control groups. When compared with the control group, a significant increase in spinal cord water content was detected in rats at 24 h after photothrombotic SCI. Conclusion : Early up-regulation of MMP-9 might be correlated with increased water content in the spinal cord at 24 h after SCI in rats. Results of this study suggest that MMP-9 is the key factor involved in disruption of the endothelial blood-barrier of the spinal cord and subsequent secondary damage after photothrombotic SCI in rats.

Targeting of Large-molecule Radiopharmaceuticals across the Blood-brain Barrier Using Endogenous Transport Systems

  • Lee, Hwa-Jeong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.94-95
    • /
    • 2002
  • Drug targeting to the central nervous system (CNS) is the limiting factor in CNS drug development because most of drug do not cross the brain capillary endothelial wall, which forms the blood-brain barrier (BBB) in vivo. One strategy for drug targeting to the brain is to use endogenous BBB transport systems. (omitted)

  • PDF

Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

  • Hu, Min;Liu, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.325-332
    • /
    • 2016
  • Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS ($1{\mu}g/ml$) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.

Imperatorin is Transported through Blood-Brain Barrier by Carrier-Mediated Transporters

  • Tun, Temdara;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • Imperatorin, a major bioactive furanocoumarin with multifunctions, can be used for treating neurodegenerative diseases. In this study, we investigated the characteristics of imperatorin transport in the brain. Experiments of the present study were designed to study imperatorin transport across the blood-brain barrier both in vivo and in vitro. In vivo study was performed in rats using single intravenous injection and in situ carotid artery perfusion technique. Conditionally immortalized rat brain capillary endothelial cells were as an in vitro model of blood-brain barrier to examine the transport mechanism of imperatorin. Brain distribution volume of imperatorin was about 6 fold greater than that of sucrose, suggesting that the transport of imperatorin was through the blood-brain barrier in physiological state. Both in vivo and in vitro imperatorin transport studies demonstrated that imperatorin could be transported in a concentration-dependent manner with high affinity. Imperatorin uptake was dependent on proton gradient in an opposite direction. It was significantly reduced by pretreatment with sodium azide. However, its uptake was not inhibited by replacing extracellular sodium with potassium or N-methylglucamine. The uptake of imperatorin was inhibited by various cationic compounds, but not inhibited by TEA, choline and organic anion substances. Transfection of plasma membrane monoamine transporter, organic cation transporter 2 and organic cation/carnitine transporter 2/1 siRNA failed to alter imperatorin transport in brain capillary endothelial cells. Especially, tramadol, clonidine and pyrilamine inhibited the uptake of [$^3H$]imperatorin competitively. Therefore, imperatorin is actively transported from blood to brain across the blood-brain barrier by passive and carrier-mediated transporter.

Role of Endogenous Transport Systems for the Transport of Basic and Acidic Drugs at Blood-Brain Barrier (염기성 및 산성 약물의 혈액-뇌관문 투과에 관여하는 내인적 수송계)

  • Kang, Young-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The endothelial cell of brain capillary called the blood-brain barrier (BBB) has carrier-mediated transport systems for nutrients and drugs. The mechanism of the BBB transport of basic and acidic drugs has been reviewed and examined for endogenous transport systems in BBB in WKY and SHRSP. Acidic drugs such as salicylic acid and basic drugs such as eperisone are taken up in a carrier mediated manner through the BBB via the monocarboxylic acid and amine transport systems. The specific dysfunction for the choline transport at the BBB in SHRSP would affect the function of the brain endothelial cell and brain parenchymal cell. The utilization of the endogenous transport systems of monocarboxylic acid and amine could be promising strategy for the effective drug delivery to the brain.

  • PDF