• Title/Summary/Keyword: Endoplasmic reticulum (ER) stress inhibitor

Search Result 30, Processing Time 0.027 seconds

Development of Porcine Somatic Cell Nuclear Transfer Embryos Following Treatment Time of Endoplasmic Reticulum Stress Inhibitor

  • Kim, Mi-Jeong;Jung, Bae-Dong;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • We examine the effect of endoplasmic reticulum (ER) stress inhibitor treatment time on the in vitro development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT embryos were classified by four groups following treatment time of ER stress inhibitor, tauroursodeoxycholic acid (TUDCA; 100 µM); 1) non-treatment group (control), 2) treatment during micromanipulation process and for 3 h after fusion (NT+3 h group), 3) treatment only during in vitro culture after fusion (IVC group), and 4) treatment during micromanipulation process and in vitro culture (NT+IVC group). SCNT embryos were cultured for six days to examine the X-box binding protein 1 (Xbp1) splicing levels, the expression levels of ER stress-associated genes, oxidative stress-related genes, and apoptosis-related genes in blastocysts, and in vitro development. There was no significant difference in Xbp1 splicing level among all groups. Reduced expression of some ER stress-associated genes was observed in the treatment groups. The oxidative stress and apoptosis-related genes were significantly lower in all treatment groups than control (p<0.05). Although blastocyst development rates were not different among all groups (17.5% to 21.7%), the average cell number in blastocysts increased significantly in NT+3 h (48.5±2.3) and NT+IVC (47.7±2.4) groups compared to those of control and IVC groups (p<0.05). The result of this study suggests that the treatment of ER stress inhibitor on SCNT embryos from the micromanipulation process can improve the reprogramming efficiency of SCNT embryos by inhibiting the ER and oxidative stresses that may occur early in the SCNT process.

Effect of Endoplasmic Reticulum (ER) Stress Inhibitor Treatment during Parthenogenetic Activation on the Apoptosis and In Vitro Development of Parthenogenetic Porcine Embryos

  • Park, Hye-Bin;Kim, Mi-Jeong;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.22 no.3
    • /
    • pp.235-244
    • /
    • 2018
  • We investigate the effect of endoplasmic reticulum (ER) stress inhibitor treatment during parthenogenetic activation of oocytes on the ER stress generation, apoptosis, and in vitro development of parthenogenetic porcine embryos. Porcine in vitro matured oocytes were activated by 1) electric stimulus (E) or 2) $E+10{\mu}M$ Ca-ionophore (A23187) treatment (EC). Oocytes were then treated by ER stress inhibitors such as salubrinal (200 nM) and tauroursodeoxychloic acid (TUDCA, $100{\mu}M$) for 3 h prior to in vitro culture. Parthenogenetic embryos were sampled to analyze ER stress and apoptosis at the 1-cell and blastocyst stages. The x-box binding protein 1 (Xbp1) mRNA and ER stress-associated genes were analyzed by RT-PCR or RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. At the 1-cell stage, although no difference was observed in Xbp1 splicing among treatments, BiP transcription level in the E group was significantly reduced by salubrinal treatment, and GRP94 and ATF4 transcription levels in EC group were significantly reduced by all treatments (p<0.05) compared to control. In the EC group, both apoptotic genes were reduced by ER stress inhibitor treatments compared to control (p<0.05) except Caspase-3 gene by TUDCA treatment. These results suggest that the treatment of ER stress inhibitor during parthenogenetic activation can reduce ER stress, and thereby reduce apoptosis and promote in vitro development of porcine parthenogenetic embryos.

Endoplasmic Reticulum (ER) Stress Inhibitor or Antioxidant Treatments during Micromanipulation Can Inhibit Both ER and Oxidative Stresses in Porcine SCNT Embryos

  • Park, Hye-Bin;Park, Yeo-Reum;Kim, Mi-Jeong;Jung, Bae-Dong;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.24 no.1
    • /
    • pp.31-41
    • /
    • 2020
  • We investigated the effects of endoplasmic reticulum (ER) stress inhibitor and antioxidant treatments during the micromanipulation of somatic cell nuclear transfer (SCNT) on in vitro development of SCNT embryos. Tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor and vitamin C (Vit. C), an antioxidant, were treated by alone or in combination, then, the level of X-box binding protein 1 (Xbp1) splicing and the expressions of ER stress-associated genes, oxidative stress-related genes, and apoptotic genes were confirmed in the 1-cell and blastocyst stages. In the 1-cell stage, the levels of Xbp1 splicing were significantly decreased in TUDCA and Vit. C treatment groups compared to the control (p<0.05). In addition, the expression levels of most ER stress-associated genes and oxidative stress-related genes were significantly lower in all treatment groups than the control (p<0.05), and the transcript levels of apoptotic genes were also significantly lower in all treatment groups than the control (p<0.05). In the blastocyst stage, decreased expression of ER stress-, oxidative stress-, and apoptosis-related genes were observed only in some treatments. However, the blastocyst formation rates in TUDCA and Vit. C treatment groups (24.8% and 22.0%, respectively) and mean blastocyst cell number in all treatment groups (59.7±4.3 to 63.5±3.3) were significantly higher (p<0.05) than those of control. The results showed that the TUDCA or Vit. C treatment during micromanipulation inhibited both ER and oxidative stresses in the early stage of SCNT embryos, thereby reducing cell damage and promoting in vitro development.

Effects of Endoplasmic Reticulum Stress Inhibitor Treatment during the Micromanipulation of Somatic Cell Nuclear Transfer in Porcine Oocytes

  • Park, Yeo-Reum;Park, Hye-Bin;Kim, Mi-Jeong;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • We examined the effects of endoplasmic reticulum (ER) stress inhibitor treatment during the micromanipulation of porcine somatic cell nuclear transfer (SCNT) on the in vitro development of SCNT embryos. ER stress inhibitors such as salubrinal (200 nM) and tauroursodeoxycholic acid (TUDCA; $100{\mu}M$) were added to the micromanipulation medium and holding medium. The expression of X-box binding protein 1 (Xbp1), ER-stress-associated genes, and apoptotic genes in SCNT embryos was confirmed at the one-cell and blastocyst stages. Levels of Xbp1 splicing and expression of ER-stress-associated genes in SCNT embryos at the one-cell stage decreased significantly with TUDCA treatment (p<0.05). The expression of ER-stress-associated genes also decreased slightly with the addition of both salubrinal and TUDCA (Sal+TUD). The expression levels of caspase-3 and Bcl2-associated X protein (Bax) mRNA were also significantly lower in the TUDCA and Sal+TUD treatments (p<0.05). At the blastocyst stage, there were no differences in levels of Xbp1 splicing, and transcription of ER-stress-associated genes and apoptosis genes between control and treatment groups. However, the blastocyst formation rate (20.2%) and mean blastocyst cell number ($63.0{\pm}7.2$) were significantly higher (p<0.05) for embryos in the TUDCA treatment compared with those for control (12.6% and $41.7{\pm}3.1$, respectively). These results indicate that the addition of ER-stress inhibitors, especially TUDCA, during micromanipulation can inhibit cellular damage and enhance in vitro development of SCNT embryos by reducing stress levels in the ER.

Brefeldin A-induced Endoplasmic Reticulum Stress Leads to Different CHOP Expression in Primary Astrocyte Cells and C6 Glioma Cells (Astrocyte 세포와 C6 glioma 세포에서 ER stress 유도 물질 brefeldin A에 의한 CHOP 단백질의 발현 차이)

  • Park, Eun Jung;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.490-495
    • /
    • 2016
  • Brefeldin A (BFA), a lactone antibiotic isolated from the fungus Eupenicillium brefeldianum, inhibits the transport of secreted and membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. BFA disrupts Golgi function, the accumulation of unfolded proteins in ER, and the induction of ER stress. Prolonged ER stress induces apoptosis at least in part through the transcription factor C/EBP (CCAAT/enhancer binding protein) homologous protein (CHOP),which is activated by the unfolded protein response (UPR). In this paper, we demonstrate that BFA-induced endoplasmic reticulum stress leads to different CHOP expression in primary astrocyte cells and C6 glioma cells. BFA induced lower CHOP expression levels in primary astrocyte cells than in C6 glioma cells; however, other ER stress inducers (thapsigargin and tunicamycin) resulted in similar expression patterns in these two cell types. Interestingly, the three different ER stress inducers (BFA, thapsigargin, and tunicamycin) induced similar levels of CHOP mRNA expression in primary astrocyte cells. The ubiquitin-proteasome inhibitor MG132 also markedly up-regulated the BFA-mediated CHOP protein expression in primary astrocyte cells. BFA also induced higher proteasome activity in primary astrocyte cells than in C6 glioma cells. Taken together, our results suggest that higher proteasomal activity might down-regulate BFA-induced CHOP expression in primary astrocyte cells.

Inhibition of ER Stress by 2-Aminopurine Treatment Modulates Cardiomyopathy in a Murine Chronic Chagas Disease Model

  • Ayyappan, Janeesh Plakkal;lizardo, Kezia;Wang, Sean;Yurkow, Edward;Nagajyothi, Jyothi F
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.386-394
    • /
    • 2019
  • Trypanosoma cruzi infection results in debilitating cardiomyopathy, which is a major cause of mortality and morbidity in the endemic regions of Chagas disease (CD). The pathogenesis of Chagasic cardiomyopathy (CCM) has been intensely studied as a chronic inflammatory disease until recent observations reporting the role of cardio-metabolic dysfunctions. In particular, we demonstrated accumulation of lipid droplets and impaired cardiac lipid metabolism in the hearts of cardiomyopathic mice and patients, and their association with impaired mitochondrial functions and endoplasmic reticulum (ER) stress in CD mice. In the present study, we examined whether treating infected mice with an ER stress inhibitor can modify the pathogenesis of cardiomyopathy during chronic stages of infection. T. cruzi infected mice were treated with an ER stress inhibitor 2-Aminopurine (2AP) during the indeterminate stage and evaluated for cardiac pathophysiology during the subsequent chronic stage. Our study demonstrates that inhibition of ER stress improves cardiac pathology caused by T. cruzi infection by reducing ER stress and downstream signaling of phosphorylated eukaryotic initiation factor ($P-elF2{\alpha}$) in the hearts of chronically infected mice. Importantly, cardiac ultrasound imaging showed amelioration of ventricular enlargement, suggesting that inhibition of ER stress may be a valuable strategy to combat the progression of cardiomyopathy in Chagas patients.

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

The Endoplasmic Reticulum Stress Response Mediates Shikonin-Induced Apoptosis of 5-Fluorouracil-Resistant Colorectal Cancer Cells

  • Piao, Mei Jing;Han, Xia;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.265-273
    • /
    • 2022
  • Resistance to chemotherapeutic drugs is a significant problem in the treatment of colorectal cancer, resulting in low response rates and decreased survival. Recent studies have shown that shikonin, a naphthoquinone derivative, promotes apoptosis in colon cancer cells and cisplatin-resistant ovarian cells, raising the possibility that this compound may be effective in drug-resistant colorectal cancer. The aim of this study was to characterize the molecular mechanisms underpinning shikonin-induced apoptosis, with a focus on endoplasmic reticulum (ER) stress, in a 5-fluorouracil-resistant colorectal cancer cell line, SNU-C5/5-FUR. Our results showed that shikonin significantly increased the proportion of sub-G1 cells and DNA fragmentation and that shikonin-induced apoptosis is mediated by mitochondrial Ca2+ accumulation. Shikonin treatment also increased the expression of ER-related proteins, such as glucose regulatory protein 78 (GRP78), phospho-protein kinase RNA-like ER kinase (PERK), phospho-eukaryotic initiation factor 2 (eIF2α), phospho-phosphoinositol-requiring protein-1 (IRE1), spliced X-box-binding protein-1 (XBP-1), cleaved caspase-12, and C/EBP-homologous protein (CHOP). In addition, siRNA-mediated knockdown of CHOP attenuated shikonin-induced apoptosis, as did the ER stress inhibitor TUDCA. These data suggest that ER stress is a key factor mediating the cytotoxic effect of shikonin in SNU-C5/5-FUR cells. Our findings provide an evidence for a mechanism in which ER stress leads to apoptosis in shikonin-treated SNU-C5/5-FUR cells. Our study provides evidence to support further investigations on shikonin as a therapeutic option for 5-fluorouracil-resistant colorectal cancer.

Endoplasmic Reticulum Mediated Necrosis-like Apoptosis of HeLa Cells Induced by Ca2+ Oscillation

  • Hu, Qingliu;Chang, Junlei;Tao, Litao;Yan, Guoliang;Xie, Mingchao;Wang, Zhao
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.709-716
    • /
    • 2005
  • Apoptosis and necrosis are distinguished by modality primarily. Here we show an apoptosis occurred instantly, induced by $300\;{\mu}M$ W-7 ((N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride), inhibitor of calmodulin), which demonstrated necrotic modality. As early as 30 min after W-7 addition, apoptotic (sub-diploid) peak could be detected by fluorescence-activated cell sorter (FACS), “DNA ladders” began to emerge also at this time point, activity of caspase-3 elevated obviously within this period. Absence of mitochondrial membrane potential (MMP) reduction and cytochrome c, AIF (apoptosis inducing factor) release, verified that this rapid apoptosis did not proceed through mitochondria pathway. Activation of caspase-12 and changes of other endoplasmic reticulum (ER) located proteins ascertained that ER pathway mediated this necrosis-like apoptosis. Our findings suggest that it is not credible to judge apoptosis by modality. Elucidation of ER pathway is helpful to comprehend the pathology of diseases associated with ER stress, and may offer a new approach to the therapy of cancer and neurodegenerative diseases.

Oxymatrine Causes Hepatotoxicity by Promoting the Phosphorylation of JNK and Induction of Endoplasmic Reticulum Stress Mediated by ROS in LO2 Cells

  • Gu, Li-li;Shen, Zhe-lun;Li, Yang-Lei;Bao, Yi-Qi;Lu, Hong
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.401-412
    • /
    • 2018
  • Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.