• Title/Summary/Keyword: Endoplasmic reticulum (ER)

Search Result 281, Processing Time 0.028 seconds

The Roles of the SNARE Protein Sed5 in Autophagy in Saccharomyces cerevisiae

  • Zou, Shenshen;Sun, Dan;Liang, Yongheng
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.643-654
    • /
    • 2017
  • Autophagy is a degradation pathway in eukaryotic cells in which aging proteins and organelles are sequestered into double-membrane vesicles, termed autophagosomes, which fuse with vacuoles to hydrolyze cargo. The key step in autophagy is the formation of autophagosomes, which requires different kinds of vesicles, including COPII vesicles and Atg9-containing vesicles, to transport lipid double-membranes to the phagophore assembly site (PAS). In yeast, the cis-Golgi localized t-SNARE protein Sed5 plays a role in endoplasmic reticulum (ER)-Golgi and intra-Golgi vesicular transport. We report that during autophagy, sed5-1 mutant cells could not properly transport Atg8 to the PAS, resulting in multiple Atg8 dots being dispersed into the cytoplasm. Some dots were trapped in the Golgi apparatus. Sed5 regulates the anterograde trafficking of Atg9-containing vesicles to the PAS by participating in the localization of Atg23 and Atg27 to the Golgi apparatus. Furthermore, we found that overexpression of SFT1 or SFT2 (suppressor of sed5 ts) rescued the autophagy defects in sed5-1 mutant cells. Our data suggest that Sed5 plays a novel role in autophagy, by regulating the formation of Atg9-containing vesicles in the Golgi apparatus, and the genetic interaction between Sft1/2 and Sed5 is essential for autophagy.

miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+ exchanger-1 in the heart

  • Kim, Jin Ock;Kwon, Eun Jeong;Song, Dong Woo;Lee, Jong Sub;Kim, Do Han
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.208-213
    • /
    • 2016
  • Prolonged ER stress (ERS) can be associated with the induction of apoptotic cell death in various heart diseases. In this study, we searched for microRNAs affecting ERS in the heart using in silico and in vitro methods. We found that miR-185 directly targets the 3′-untranslated region of Na+/H+ exchanger-1 (NHE-1), a protein involved in ERS. Cardiomyocyte ERS-triggered apoptosis induced by 100 ng/ml tunicamycin (TM) or 1 μM thapsigargin (TG), ERS inducers, was significantly reduced by miR-185 overexpression. Protein expression of pro-apoptotic markers such as CCAAT/enhancer-binding protein homologous protein (CHOP) and cleaved-caspase-3 was also markedly reduced by miR-185 in a dose-dependent manner. Cariporide (20 μM), a pharmacological inhibitor of NHE-1, also attenuated ERS-induced apoptosis in cardiomyocytes and CHOP protein expression, suggesting that NHE-1 plays an important role in ERS-associated apoptosis in cardiomyocytes. Collectively, the present results demonstrate that miR-185 is involved in cardio-protection against ERS-mediated apoptotic cell death.

Treatment of Epidermal Growth Factor (EGF) enhances Nuclear Maturation of Porcine Oocytes and Stimulates Expression of ER/Golgi Transport Proteins

  • Hwangbo, Yong;Oh, Hae-In;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • This study was conducted to investigate stimulatory effect of epidermal growth factor (EGF) on nuclear maturation and the expression level of EGF-receptor (EGFR), GM-130 (a marker of Golgi apparatus), transport protein Sec61 subunit beta ($Sec61{\beta}$), and coatomer protein complex subunit gamma 2 (COPG2) in porcine oocytes. The cumulus-oocyte complexes were collected from follicle with 3-6 mm in diameter. They were incubated in medium with/without EGF for 22 h (IVM I) and subsequently incubated hormone-free medium with/without EGF for 22 h (IVM II). Nuclear maturation state was checked by aceto-orcein stain. Protein expression of EGFR, GM-130, $Sec61{\beta}$, and COPG2 were measured by immunofluorescence. In results, nuclear maturation of oocytes in EGF non-treated oocytes were significantly lower than EGF-treated groups at IVM I or IVM II stage (P<0.05), whereas maturational rate in EGF treatment groups at both of IVM stage was higher in among the all treatment groups (P<0.05). EGFR, GM-130, $Sec61{\beta}$ and COPG2 were expressed in the cytoplasm of oocytes. Especially, GM-130 and EGFR were strongly expressed, but $Sec61{\beta}$ and COPG2 were weakly expressed in cortical area of cytoplasm. The protein level of GM-130, $Sec61{\beta}$, and COPG2 were significantly higher in the EGF-treated groups (P<0.05). However EGFR was no difference between non EGF-treated groups and control. In conclusion, EGF plays an important role in the systems for oocyte maturation with endoplasmic reticulum and Golgi apparatus. In addition, the protein levels of $Sec61{\beta}$ and COPG2 could be changed by EGF in the porcine oocytes during maturation.

Spatio-Temporal Expression Pattern of Grp 78, a Putative Hoxc8 Downstream Target Gene, During Murine Embryogenesis

  • Kang Jin Joo;Kwon Yunjeong;Lee Eun Young;Park Hyoung Woo;Yang Hye-Won;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.311-318
    • /
    • 2005
  • Grp78, discovered as one of the putative target genes of Hoxc8, is a highly conserved stress protein and functions as a molecular chaperone in the endoplasmic reticulum (ER). In order to see the stage-specific expression pattern of Grp78 during development, mouse embryos from day 7.5 to 17.5 p.c. were isolated, and RT-PCR as well as in situ hybridization was performed. When RT-PCR was performed using Grp78 specific primers, periodic expression pattern was detected. And also a region-specific expression pattern was detected with a strong expression in the trunk part of day 11.5 p.c. embryo, like that of Hoxc8. When in situ hybridization was performed, Grp78 was revealed to be expressed in the endoderm, somite, neuroepithelium cells of neural tube in early embryos. In the case of late embryos, Grp78 expression was detected in the liver, segmental bronchus within cranial lobe of lung, ossification center within the cartilage primordium of rib and vertebra, submandibular gland, as well as metanephros. These expression patterns are very much similar to those of Hoxc8. Since Hoxc8 has been reported to regulate apoptosis during organogenesis, it might be possible that the apoptotic function could have been conveyed through the expression of Grp78, implying that the Grp78 is one of the Hoxc8 downstream target genes.

  • PDF

Transient Knock Down of Grp78 Reveals Roles in Serum Ferritin Mediated Pro-inflammatory Cytokine Secretion in Rat Primary Activated Hepatic Stellate Cells

  • Wang, Chi-Mei;Li, Shan-Jen;Wu, Chi-Hao;Hu, Chien-Ming;Cheng, Hui-Wen;Chang, Jung-Su
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.605-610
    • /
    • 2014
  • Chronic liver diseases, including cancer, are characterized by inflammation and elevated serum ferritin (SF). However, the causal-relationship remains unclear. This study used primary rat hepatic stellate cells (HSC) as a model to investigate effects of physiological SF concentrations (10, 100 and 1000 pM) because HSCs play a central role in the development and progression of liver fibrosis. Physiological concentrations of SF, either horse SF or human serum, induced pro-inflammatory cytokine $IL1{\beta}$, IL6 and $TNF{\alpha}$ secretion in rat activated HSCs (all p<0.05). By contrast, treatment did not alter activation marker ${\alpha}SMA$ expression. The presence of SF markedly enhanced expression of Grp78 mRNA (p<0.01). Furthermore, transient knock down of Grp78 by endotoxin EGF-SubA abolished SF-induced $IL1{\beta}$ and $TNF{\alpha}$ secretion in activated HSCs (all p<0.05). In conclusion, our results showed that at physiological concentrations SF functions as a pro-inflammatory mediator in primary rat HSCs. We also provide a molecular basis for the action of SF and identified Grp78-associated ER stress pathways as a novel potential therapeutic target for resolution of fibrosis and possible prevention of liver cancer.

Effects of Cyclophosphamide in the Epididymis of the Rat III. Cauda (Cyclophosphamide가 흰쥐의 부정소에 미치는 영향 III. 미 부)

  • Cho, Kwang-Phil;Kim, Jeong-Sang;Jung, Hae-Man
    • Applied Microscopy
    • /
    • v.24 no.2
    • /
    • pp.12-25
    • /
    • 1994
  • This research was undertaken to determine the effects of the anticancer and immunosuppressive drug cyclophosphamide (CP) on the epididymis of the male rat in terms of ultrastructural alteration and protein analysis by SDS-PAGE at different groups; control group, 1 week group, 3 weeks group, 5 weeks group were treated with saline (control group) or CP at doses of 20mg/Kg/week, 1 time a week, respectively. In the cytoplasm of the principal cells on the epididymis, the mitochondrial outer and inner membranes were significantly swollen or disrupted. The cisterns of rough endoplasmic reticulum (rER) were also swollen, and a number of Golgi vesicles were increased, respectively. It is suggested that treatment with CP alters the specific cell organelles in all segments of the epididymis. CP caused changes in protein concentrations in cauda of epididymis after CP treatment. Total proteins of 30 to 39 species such as lactate dehydrogenase, carnitine acetyltransferase and acid phosphatase were expressed in the cauda fluid. Then the more CP was increased, the more concentration of proteins caused to decrease, synthesize or increase in epididymal cauda. In contrast to the control group, in particular 29KD and the other 10 proteins in the cauda fluid were decreased or disappeared, respectively, whereas 89KD and the other 6 proteins in the cauda, were increased or synthesized, respectively. The other proteins are not showed distinctive difference. Therefore, it is possible that CP at a high dose accumulation alters epididymal function with dose-related increase or decrease in specific activity of marked proteins for all regions of the epididymis (particularly, specific segment of cauda). These alterations could be mediated by direct, toxic effects of the drug on the epithelium or be secondary to changes in the spermatozoa as a result of the CP treatment.

  • PDF

Bone Formation by rhBMP-7 Transduced HEK 293 Cells in Nude Mouse (재조합 BMP-7 유전자가 전달된 HEK 293 세포에 의한 누드 마우스에서의 뼈형성)

  • Jeong, Su-Yon;Chang, Won-Tae;Chang, Yon-Sil;Ahn, Myun-Hwan;Kim, Jae-Ryong;Song, In-Hwan
    • Journal of Yeungnam Medical Science
    • /
    • v.20 no.2
    • /
    • pp.142-151
    • /
    • 2003
  • To induce bone formation at ectopic site by tissue engineering and gene therapy, we transplanted collagen sponges containing rhBMP-7 transduced HEK 293 cells in the hypodermis of nude mice. Bone formation was investigated by histological and electron microscopic method at 3, 6, and 9 weeks after transplantation. At 9 weeks after transplantation, eosinophilic bony tissue was observed in the implanted collagen sponge and was confirmed as bone tissue by Von Kossa stain. In the transmission electron microscopic observation, the cells in newly formed bone tissue had eccentrically located nucleus and well developed rough endoplasmic reticulum (rER). Therefore, the cells were evaluated as osteoblasts. Those results suggest that it is possible to form a bone tissue in the ectopic site by transplantation of rhBMP-7 transduced HEK 293 cells. This will be contributed to push more advanced gene therapy for bone formation. However, the HEK 293 cell is unable to apply to the clinical gene therapy. Therefore it is worth to find more compatible cells for clinical application. In addition, collagen sponge is considered as an excellent scaffold and/or carrier for gene therapy and a good biomaterial for tissue engineering.

  • PDF

Mutational Analysis of the Effector Domain of Brassica Sar1 Protein

  • Kim, Min-Gab;Lee, Jung-Ro;Lim, Hye-Song;Shin, Mi-Rim;Cheon, Min-Gyeong;Lee, Deok-Ho;Kim, Woe-Yeon;Lee, Sang-Yeol
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.109-114
    • /
    • 2007
  • Sar1p is a ras-related GTP-binding protein that functions in intracellular protein transport between the endoplasmic reticulum (ER) and the Golgi complex. The effector domain of Ras family proteins is highly conserved and this domain is functionally interchangeable in plant, yeast and mammalian Sar1. Using a recombinant Brassica sar1 protein (Bsar1p) harboring point mutations in its effector domain, we here investigated the ability of Sar1p to bind and hydrolyze GTP and to interact with the two sar1-specific regulators, GTPase activating protein (GAP) and guanine exchange factor (GEF). The T51A and T55A mutations impaired Bsar1p intrinsic GTP-binding and GDP-dissociation activity. In contrast, mutations in the switch domain of Bsar1 did not affect its intrinsic GTPase activity. Moreover, the P50A, P54A, and S56A mutations affected the interaction between Bsar1p and GAP. P54A mutant protein did not interact with two regulating proteins, GEF and GAP, even though the mutation didn't affect the intrinsic GTP-binding, nucleotide exchange or GTPase activity of Bsar1p.

Effects of Cyclophosphamide in the Epididymis of the Rat I. Caput (Cyclophosphamide가 흰쥐의 부정소에 미치는 영향 I. 두부)

  • Cho, Kwang-Phil;Kim, Saeng-Gon;Jung, Hae-Man;Kim, Jeong-Sang;Kim, Young-Gon;Rho, Young-Bok
    • Applied Microscopy
    • /
    • v.22 no.1
    • /
    • pp.89-102
    • /
    • 1992
  • This research was undertaken to determine the effects of the anticancer and immunosuppressive drug cyclophosphamide (CP) on the epididymal caput of the male rat in terms of ultrastructural alteration and protein analysis by SDS-PAGE at different groups; control group, 1 week group, 3 weeks group, 5 weeks group were treated with saline (control group) or CP at doses of 20 mg/kg/week, 1 time a week, respectively. In the cytoplasm of the principal cells on the epididymis, the mitochondrial outer and inner membranes were significantly swollen or disrupted. The lumens of rough endoplasmic reticulum (rER) were also swollen, and the number of Golgi vesicles were increased, respectively. It is suggested that treatment with CP alters the specific cell organelles in the epididymis. CP caused changes in protein concentrations in caput of epididymis after CP treatment. Total proteins of 32 to 37 species such as lactate dehydrogenase, carnitine acetyltransferase and succinate dehydrogenase were expressed in the caput fluid. Then the more CP was increased, the more concentration of proteins caused to decrease, synthesize or increase in epididymis. In contrast to the control group, in particular carnitine acetyltransferase and the other 9 proteins in the caput fluid were decreased or disappeared, respectively, whereas lactate dehydrogenase and the other 5 proteins in the caput fluid were increased or synthesized, respectively. The other proteins are not showed distinctive difference. These alterations could be direct mediated by toxic effects of the drug on the epithelium or be secondary to changes in the spermatozoa as a result of the CP treatment.

  • PDF

Effects of Ginsenosides on $pp60^{c-src}$ Kinase, Intracellular Calcium and Cell Proliferation in NIH 373 Cells

  • Hong, Hee-Youn;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.126-132
    • /
    • 1998
  • In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.

  • PDF