• Title/Summary/Keyword: Endodontics

Search Result 2,064, Processing Time 0.026 seconds

THE EFFECT OF IRRADIATION MODES ON POLYMERIZATION AND MICROLEAKAGE OF COMPOSITE RESIN (광조사 방식이 복합레진의 중합과 누출에 미치는 영향)

  • Park, Jong-Jin;Park, Jeong-Won;Park, Sung-Ho;Park, Ju-Myong;Kwon, Tae-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.158-174
    • /
    • 2002
  • The aim of this study was to investigate the effect of light irradiation modes on polymerization shrinkage, degree of cure and microleakage of a composite resin. VIP$^{TM}$ (Bisco Dental Products, Schaumburg, IL, USA) and Optilux 501$^{TM}$ (Demetron/Kerr, Danbury, CT, USA) were used for curing Filtek$^{TM}$ Z-250 (3M Dental Products, St. Paul., MN, USA) composite resin using following irradiation modes: VIP$^{TM}$ (Bisco) 200mW/$\textrm{cm}^2$ (V2), 400mW/$\textrm{cm}^2$ (V4), 600mW/$\textrm{cm}^2$ (V6), Pulse-delay (200 mW/$\textrm{cm}^2$ 3 seconds, 5 minutes wait, 600mW/$\textrm{cm}^2$ 30seconds, VPD) and Optilux 501$^{TM}$ (Demetron/Kerr) C-mode (OC), R-mode (OR). Linear polymerization shrinkage of the composite specimens were measured using Linometer (R&B, Daejeon, Korea) for 90 seconds for V2, V4, V6, OC, OR groups and for up to 363 seconds for VPD group (n=10, each). Degree of conversion was measured using FTIR spectrometer (IFS 120 HR, Bruker Karlsruhe, Germany) at the bottom surface of 2 mm thick composite specimens V2, Y4, V6, OC groups were measured separately at five irradiation times (5, 10, 20, 40, 60 seconds) and OR, VPD groups were measured in the above mentioned irradiation modes (n=5 each). Microhardness was measured using Digital microhardness tester (FM7, Future-Tech Co., Tokyo, Japan) at the top and bottom surfaces of 2mm thick composite specimens after exposure to the same irradiation modes as the test of degree of conversion(n=3, each). For the microleakage test, class V cavities were prepared on the distal surface of the ninety extracted human third molars. The cavities were restored with one of the following irradiation modes : V2/60 seconds, V4/40 seconds, V6/30 seconds, VPD , OC and OR. Microleakage was assessed by dye penetration along enamel and dentin margins of cavities. Mean polymerization shrinkage, mean degree of conversion and mean microhardness values for all groups at each time were analyzed using one-way ANOVA and Duncan's multiple range test, and using chi-square test far microleakage values. The results were as follows : . Polymerization shrinkage was increased with higher light intensity in groups using VIP$^{TM}$ (Bisco) : the highest with 600mW/$\textrm{cm}^2$, followed by Pulse-delay, 400mW/$\textrm{cm}^2$ and 200mW/$\textrm{cm}^2$ groups, The degree of polymerization shrinkage was higher with Continuous mode than with Ramp mode in groups using Optilux 501$^{TM}$ (Demetron/Kerr). . Degree of conversion and microhardness values were higher with higher light intensity. The final degree of conversion was in the range of 44.7 to 54.98% and the final microhardness value in the range of 34.10 to 56.30. . Microleakage was greater in dentin margin than in enamel margin. Higher light intensity showed more microleakage in dentin margin in groups using VIP$^{TM}$ (Bisco). The microleakage was the lowest with Continuous mode in enamel margin and with Ramp mode in dentin margin when Optilux 501$^{TM}$ (Demetron/Kerr) was used.

SURFACE ROUGHNESS OF COMPOSITE RESIN ACCORDING TO FINISHING METHODS (복합레진 표면의 연마방법에 따른 표면조도)

  • Min, Jeong-Bum;Cho, Kong-Chul;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.138-150
    • /
    • 2007
  • The purpose of this study was to evaluate the difference of surface roughness of composite resin according to composite resin type, polishing methods, and use of resin sealant. Two hundred rectangular specimens, sized $8{\times}3{\times}2mm$, were made of Micro-new (Bisco, Inc., Schaumburg, IL, U.S.A) and Filtek Supreme (3M ESPE Dental Products, St. Paul, MN, U.S.A.), and divided into two groups; Micronew-M group, Filtek Supreme-S group. Specimens for each composite group were subdivided into five groups by finishing and polishing instruments used; M1 & S1(polyester strip), M2 & S2 (Sof-Lex disc), M3 & S3 (Enhance disc and polishing paste), M4 & S4(Astropol) and M5 & S5 (finishing bur), Polished groups were added letter B after the application of resin surface sealant (Biscover), eg, M1B and S1B. After specimens were stored with distilled water for 24hr, average surface roughness (Ra) was taken using a surface roughness tester. Representative specimens of each group were examined by FE-SEM (S-4700: Hitachi High Technologies Co., Tokyo, Japan). The data were analysed using paired t-test, ANOVA and Duncan's tests at the 0.05 probability level. The results of this study were as follows ; 1. The lowest Ra was achieved in all groups using polyester strip and the highest Ra was achieved in M5, S5 and M5B groups using finishing bur. On FE-SEM, M1 and S1 groups provided the smoothest surfaces, M5 and S5 groups were presented the roughest surfaces and voids by debonding of filler on the polished specimens. 2. There was no significant difference in Ra between Micronew and Filtek Supreme before the application of resin sealant, but Micronew was smoother than Filek Supreme after the application of resin sealant. 3. There was significant corelation between Ra of type of composite resin and polishing methods before the application of resin sealant (p=0.000), but no significant interaction between them after the application of resin sealant. On FE-SEM, most of composite resin surfaces were smooth after the application of resin sealant on the polished specimens. 4. Compared with before and after the application of resin sealant in group treated in the same composite and polishing methods, Ra of M4B and M5B was statistically lower than that of M4 and M5, and S5B was lower than that of S5, respectively (p<0.05). In conclusion, surface roughness by polishing instruments was different according to type of composite resin. Overall, polyester strip produced the smoothest surface, but finishing bur produced the roughest surface. Application of resin sealant provided the smooth surfaces in specimens polished with Enhance, Astropol and finishing bur, but not provided them in specimens polished with Sof-Lex disc.

APICAL FITNESS OF NON-STANDARDIZED GUTTA-PERCHA CONES IN SIMULATED ROOT CANALS PREPARED WITH ROTARY ROOT CANAL INSTRUMENTS (전동화일로 형성된 근관에서 비표준화 Gutta-percha Cone의 적합성)

  • Kwon, O-Sang;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.390-398
    • /
    • 2000
  • The purpose of this study was to evaluate the apical fitness of non-standardized gutta-percha cones in root canals prepared with rotary Ni-Ti root canal instruments of various tapers and apical tip sizes. Simulated sixty curved root canals of plastic blocks were prepared with crown-down technique using rotary root canal instruments of Maillefer ProFile$^{(R)}$ .04 and .06 taper (Maillefer Instrument SA, Switzerland). Specimens were divided into six groups and prepared as follows: Group 1, prepared up to size 25 of .04 taper ; Group 2, prepared up to size 30 of .04 taper ; Group 3, prepared up to size 35 of .04 taper ; Group 4, prepared up to size 25 of .06 taper ; Group 5, prepared up to size 30 of .06 taper ; Group 6 ; prepared up to size 35 of .06 taper. After cutting off the coronal portion of plastic, blocks perpendicular to the long axis of the canal with the use of a diamond saw, apical 5mm of canal space was analyzed. Prepared apical canal spaces were duplicated using rubber base impression material to evaluate two dimensional total area of apical canal space. Various sized gutta-percha cones were applied in the 5mm-apical canal space, which were size 25, size 30 and size 35 standardized gutta-percha cone, Diadent Dia-Pro ISO-.04$^{TM}$ and .06$^{TM}$(Diadent, Korea), and medium-fine (MF), fine (F), fine-medium (FM) and medium (M) sized non-standardized gutta-percha cones (Diadent, Korea). Coronal excess gutta-percha were cut off with a sharp blade. Photographs of impressed apical canal spaces and gutta-percha cones were taken with a CCD camera under a stereomicroscope and stored in a computer. Areas of the total canal space and gutta-percha cones were calculated using a digitalized image analysing program, CompuScope (Sungjin Multimedia Co., Korea). Ratio of apical fitness was obtained by calculating the area of gutta-percha cone to the total area of the canal space. The data were analysed statistically using One-way Analysis of Variance and Duncan's Multiple Range Test. The results were as follows: 1. In canals prepared up to size 25 ProFile$^{(R)}$ of .04 taper, non-standardized MF and F cones occupied significantly more canal space than Dia-Pro ISO-.04$^{TM}$ or size 25 standardized ones (p<0.05). 2. In canals prepared up to size 30 ProFile$^{(R)}$ of .04 taper, non-standardized F cones occupied significantly more canal space than Dia-Pro ISO-.04$^{TM}$ or size 30 standardized ones (p<0.05), and non-standardized MF cones occupied more canal space than size 30 standardized ones (p<0.05). 3. In canals prepared up to size 35 ProFile$^{(R)}$ of .04 taper, there was no significant difference in canal space occupation among non-standardized MF and F, size 35 standardized, and Dia-Pro ISO-.04$^{TM}$ cones (p>0.05). 4. In canals prepared up to size 25 ProFile$^{(R)}$ of .06 taper, non-standardized MF and F cones occupied significantly more canal space than Dia-Pro ISO-.06$^{TM}$, or size 25 standardized ones (p<0.05), and Dia-Pro ISO-.06$^{TM}$, cones occupied significantly more space than size 25 standardized ones (p<0.05). 5. In canals prepared up to size 30 ProFile$^{(R)}$ of .06 taper, non-standardized FM cones occupied significantly more canal space than Dia-Pro ISO-.06$^{TM}$ or size 30 standardized ones (p<0.05), and non-standardized F cones occupied significantly more canal space than size 30 standardized ones (p<0.05). 6. In canals prepared up to size 35 ProFile$^{(R)}$ of .06 taper, non-standardized M and FM, Dia-Pro ISO-.06$^{TM}$ occupied significantly more canal space than size 35 standardized ones (p<0.05). In summary, in both canals prepared with .04 or .06 taper ProFile$^{(R)}$, non-standardized cones showed better fitness than Dia-Pro ISO$^{TM}$ or standardized ones, which was more characteristic in smaller canals.

  • PDF

THE EFFECT OF INTERMITTENT COMPOSITE CURING ON MARGINAL ADAPTATION (복합레진의 간헐적 광중합 방법이 변연적합도에 미치는 영향)

  • Yun, Yong-Hwan;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.248-259
    • /
    • 2007
  • The aim of this research was to study the effect of intermittent polymerization on marginal adaptation by comparing the marginal adaptation of intermittently polymerized composite to that of continuously polymerized composite. The materials used for this study were Pyramid (Bisco Inc., Schaumburg, U.S.A.) and Heliomolar (Ivoclar Vivadent, Liechtenstein) . The experiment was carried out in class II MOD cavities prepared in 48 extracted human maxillary premolars. The samples were divided into 4 groups by light curing method: group 1- continuous curing (60s light on with no light off), group 2-intermittent curing (cycles of 3s with 2s light on & 1s light off for 90s); group 3- intermittent curing (cycles of 2s with 1s light on & 1s light off for 120s); group 4- intermittent curing (cycles of 3s with 1s light on & 2s light off for 180s). Consequently the total amount of light energy radiated was same in all the groups. Each specimen went through thermo-mechanical loading (TML) which consisted of mechanical loading (720,000 cycles, 5.0 kg) with a speed of 120 rpm for 100hours and thermocycling (6000 thermocycles of alternating water of $50^{\circ}C$ and $55^{\circ}C$). The continuous margin (CM) (%) of the total margin and regional margins, occlusal enamel (OE), vertical enamel (VE), and cervical enamel (CE) was measured before and after TML under a $\times200$ digital light microscope. Three-way ANOVA and Duncan's Multiple Range Test was performed at 95% level of confidence to test the effect of 3 variables on CM (%) of the total margin: light curing conditions, composite materials and effect of TML. In each group, One-way ANOVA and Duncan's Multiple Range Test was additionally performed to compare CM (%) of regions (OE, VE CE). The results indicated that all the three variables were statistically significant (p < 0.05). Before TML, in groups using Pyramid, groups 3 and 4 showed higher CM (%) than groups 1 and 2, and in groups using Heliomolar. groups 3 and 4 showed higher CM (%) than group 1 (p < 0.05). After TML, in both Pyramid and Heliomo)ar groups, group 3 showed higher CM (%) than group 1 (p < 0.05) CM (%) of the regions are significantly different in each group (p < 0.05). Before TML, no statistical difference was found between groups within the VE and CE region. In the OE region, group 4 of Pyramid showed higher CM (%) than group 2, and groups 2 and 4 of Heliomolar showed higher CM (%) than group 1 (p < 0.05). After TML, no statistical difference was found among groups within the VE and CE region. In the OE region, group 3 of Pyramid showed higher CM (%) than groups 1 and 2, and groups 2,3 and 4 of Heliomolar showed higher CM (%) than group 1 (p < 0.05). It was concluded that intermittent polymerization may be effective in reducing marginal gap formation.