• Title/Summary/Keyword: Endochondral bone

Search Result 41, Processing Time 0.02 seconds

Hypoxia Inducible Factor-1α Directly Induces the Expression of Receptor Activator of Nuclear Factor-κB Ligand in Chondrocytes

  • Baek, Kyunghwa;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • Receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) is an osteoblast/stromal cell-derived essential factor for osteoclastogenesis. During endochondral bone formation, hypertrophic chondrocytes calcify cartilage matrix that is subsequently resorbed by osteoclasts in order to be replaced by new bone. Hypoxia-induced upregulation of RANKL expression has been previously demonstrated in an in vitro system using osteoblasts; however, the involved mechanism remains unclear in chondrocytes. In the present study, we investigated whether hypoxia regulates RANKL expression in ATDC5 cells, a murine chondrogenic cell line, and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) mediates hypoxia-induced RANKL expression by transactivating the RANKL promoter. The expression levels of RANKL mRNA and protein, as well as HIF-$1{\alpha}$ protein, were significantly increased in ATDC5 cells under hypoxic condition. Constitutively active HIF-$1{\alpha}$ alone significantly increased the levels of RANKL expression under normoxic conditions, whereas dominant negative HIF-$1{\alpha}$ reduced hypoxia-induced RANKL expression. HIF-$1{\alpha}$ increased RANKL promoter reporter activity in a HIF-$1{\alpha}$ binding element-dependent manner in ATDC5 cells. Hypoxia-induced RANKL levels were much higher in differentiated ATDC5 cells, as compared to proliferating ATDC5 cells. These results suggested that under hypoxic conditions, HIF-$1{\alpha}$ mediates induction of RANKL expression in chondrocytes; in addition, hypoxia plays a role in osteoclastogenesis during endochondral bone formation, at least in part, through the induction of RANKL expression in hypertrophic chondrocytes.

A histological study on the development of scapula in the Korean native cattle (한우 태자의 견갑골 발생에 관한 조직학적 연구)

  • Park, Moon-euk;Yang, Hong-hyun;Paik, Young-ki;Lee, Han-kyoung
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.309-319
    • /
    • 1992
  • This study was undertaken to establish the sequence of development of ages and its time of the fetal endochondral ossification in the scapula of the Korean native cattle. This study was also designed to confirm through histological observation the earliest stages of both chondrification and ossification. Thirty eight scapulae, a series of embryos and fetuses from the pregnant Korean native cattle ranging from 11 to 110mm in crown-rump (C-R) length, were used. The following results were obtained. The ossification center was observed in the supra- and infra- spinous fossa in the 5th group (CRL 51-60mm), that was markedly ossified in the 6th group (CRL 61~70mm) by Alizarin red S stain. The chondrogenic center of scapula was observed in the 1st group (CRL 11~20mm). The primary ossification center was presented in the 4th group (CRL 41~50mm). In the 5th group(CRL 51~60mm), the endochondral ossification progressed actively. Alcianophility was markedly increased in the interterritorial matrix in the 3rd group (CRL 31~40mm. However this reaction was markedly decreased in the interterritorial matrix the adjacent portion to the marrow cavity and trabecula in the 5th group (CRL 51~60mm).

  • PDF

Skeletal Development - Wnts Are in Control

  • Hartmann, Christine
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.177-184
    • /
    • 2007
  • Approximately 200 individual skeletal elements, which differ in shape and size, are the building blocks of the vertebrate skeleton. Various features of the individual skeletal elements, such as their location, shape, growth and differentiation rate, are being determined during embryonic development. A few skeletal elements, such as the lateral halves of the clavicle and parts of the skull are formed by a process called intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts, while the majority of skeletal elements are formed via endochondral ossification. The latter process starts with the formation of a cartilaginous template, which eventually is being replaced by bone. This requires co-regulation of differentiation of the cell-types specific for cartilage and bone, chondrocytes and osteoblasts, respectively. In recent years it has been demonstrated that Wnt family members and their respective intracellular pathways, such as non-canonical and the canonical $Wnt/{\beta}$-catenin pathway, play important and diverse roles during different steps of vertebrate skeletal development. Based on the recent discoveries modulation of the canonical Wnt-signaling pathway could be an interesting approach to direct stem cells into certain skeletal lineages.

Activation of Nrf2 by sulfuretin stimulates chondrocyte differentiation and increases bone lengths in zebrafish

  • Seo-Hyuk Chang;Hoi-Khoanh Giong;Da-Young Kim;Suji Kim;Seungjun Oh;Ui Jeong Yun;Jeong-Soo Lee;Kye Won Park
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.496-501
    • /
    • 2023
  • Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth.

Effects of Safflower Seed Extracts and Bovine Bone on Regeneration of Bone Defects in Mongrel Dogs (홍화씨 추출물 및 우골유도합성골이 성견골 결손부 재생에 미치는 영향)

  • Seo, Jae-Jin;Kim, Tak;Pi, Sung-Hee;Yun, Gi-Yun;Yu, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.553-569
    • /
    • 2000
  • Many natural medicines have been studied for their capacity and effects of antibacterial, anti-inflammatory and regenerative potential in periodontal tissues. Safflower seed has been traditionally used as a drug for treatment of bone fracture in oriental medicine. The purpose of the present study was to compare the effects of safflower seed extract and bone substitute on bone formation and regeneration in artificial defects in mongrel dogs. The bony defects were made with round bur at mandible and tibia. Extracts of safflower seed and bovine bone were placed directly at each defect for experimental group, and the defect of control group was sutured without any other treatment. Experimental animals were sacrificed at 8 weeks. And then histopathologic reading and histomorphometric study was done. There was not significant differences between control and experimental groups in osteoclastic activity and infiltration of inflammatory cells. However, new capillary proliferation, fibrosis and new bone formation were prominent in safflower seed extract group. The mandibular defects of safflower seed extract group were healed with dense connective and bony tissues, and endochondral bone formation was observed in tibial defect of safflower seed extract group only. New bone area of safflower seed extract group was more significantly increased than that of control and that of bone substitute group. These results indicate that direct local application of safflower seed extracts on bony defects seems to reduces the early inflammatory response and to promotes the bone regeneration.

  • PDF

DISTRIBUTION OF NONCOLLAGENOUS PROTEIN DURING REPAIR OF PARTIALLY RESECTED CONDYLAR CARTILAGE AND BONE;SEM AND IMMUNOHISTOCHEMICAL STUDY (하악두(下顎頭)의 부분절제(部分切除)된 연골(軟骨) 및 골(骨)의 치유과정(治癒課程)에서 비교원성(非膠原性) 단백질(蛋白質) 분포(分布)에 관(關)한 연구(硏究);주사전자현미경적(走査電子顯微鏡的) 및 면역조직화학적(免疫組織化學的) 연구(硏究))

  • Kim, Myung-Hwan;Lee, Sang-Chull
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.3
    • /
    • pp.411-427
    • /
    • 1996
  • The purpose of this study was to observe the healing process and the distribution of fibronectin in injured condylar cartilage and bone by using LM and SEM. In order to perform this study, 40 male rat, weighing about 250g were selected. Under general anesthesia with Pentobarbital sodium, condylar cartilage and neck bone were resected. Then, the wound was irrigated with saline and closed with 5-0 chromic catgut and 4-0 silk by layer-to-layer suturing. The experimental rats were sacrificed by perfusion with 3% paraformaldehyde at 1st and 4th week after operation. The condylar process and surrounding tissues were cut, demineralized, dehydrated and embedded in paraffin. The histological observation of the specimens in LM level was performed after H-E stain and Azan stain. For localization of fibronectin, immunostaining was achieved by the avidin-biotin complex method. To study the change on condylar surface, the specimens were dehydrated, dried, gold coated and were observed with a scanning electron microscope(Hitachi S-2300). The results were as follows ; 1. The cartilage group and the bone group were repaired with epiphyseal cartilage layer on the cut surface as the normal control group. 2. The cut surface was repaired more quickly in the cartilage group than in the bone group. 3. Chondrocytes, diferentiated during healing, were stained strongly to anti-fibronectin, and fibronectin was supposed to participatein chondrocyte differentiation and cartilagenous matrix formation. 4. Fibronectin was distributed more in the new bone than in the old bone, and the osteoblasts surrounding it were also stained strongly. Fibronectin was supposed to participate in new bone matrix formation. 5. Fibronectin is supposed to be associated with the differentiation, migration and adhesion of chondrocyte and osteoblast and to participate in endochondral bone formation.

  • PDF

A Rare Case of Solitary Osteochondroma at the Temporomandibular Joint: A Case Report

  • Park, Byungho;Jang, Wan-Hee;Park, Tae-Jun;Lee, Bu-Kyu
    • Journal of Korean Dental Science
    • /
    • v.12 no.2
    • /
    • pp.66-72
    • /
    • 2019
  • Osteochondroma is a bone tumor with cartilaginous growth potential that generally appears near the growth plate of long bones in areas such as hip, knee, and shoulder joints, related to the nature of endochondral ossification and it is known a common benign bone tumor. However, it has been very rare in craniofacial region possibly because craniofacial bone is largely formed by intramembranous ossification. Moreover, reports on the solitary type of osteochondroma in mandibular condyle has been extremely rare. Osteochondroma in mandibular condylar may show various symptoms similar to general temporomandibular joint disorders (TMDs), such as pain in the condylar area during mouth opening, internal derangement, facial asymmetry or posterior open bite. Therefore, it can be disregarded for a long time period without any adequate treatment. Surgical excision has been the treatment option for the solitary osteochondroma with very low recurrence rate reportedly. In this case report, a rare case of solitary osteochondroma developed in unilateral mandibular condyle is presented with emphasis on differential diagnosis with general TMDs.

Increased Expression of CTGF in Periodontitis Tissue and Its Role for Enhanced Mature Osteoclast Survival (치주염 조직에서 발현이 증가하는 CTGF에 의한 파골세포 생존 증가)

  • Han, Hye-Yeon;Park, Jong-Cheol;Ryu, Mi Heon;Bae, Moon-Kyoung;Kim, Hyung Joon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.41 no.4
    • /
    • pp.155-162
    • /
    • 2017
  • Connective tissue growth factor (CTGF, CCN2) is one of the multi-functional secreted proteins which belong to CCN family of cysteine-rich growth factors. CTGF is known to have pivotal roles in embryonic endochondral ossification but its role in relevance to periodontitis is never been determined. To identify new molecular mediators associated with periodontitis-induced bone resorption, we have analyzed publicly available GEO database and found the markedly augmented CTGF mRNA expression in periodontitis gingival tissues. The existence of CTGF significantly enhanced mature osteoclasts survival which accompanied by reduction in TUNEL-positive nuclei and PARP cleavage. These results may provide another line of evidence the CTGF mediated prolonged osteoclast survival and subsequent increased bone resorption in the periodontitis patients.

EXPRESSION OF TYPE I, TYPE II COLLAGEN ON DISTRACTION OSTEOGENESIS IN THE RABBIT MANDIBLE (가토 하악골에서 신연 골형성술시 제 I형 및 II형 교원질의 발현)

  • Kang, Dae-Sil;Jee, Yu-Jin;Song, Hyun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.261-270
    • /
    • 2004
  • The purpose of this experiment was to examine the histological changes and the pattern of expression of type I, II collagen in the elongated area by distraction osteogenesis in the rabbit mandible. Sixteen rabbits weighing 2.5kg-3kg were used for this experiment. Experimental group was distracted at the rate of 0.7mm, twice/day for 7days, and control group was only osteotomized. After 5 days latency, osteotomic site is distracted for 7days. Consolidation period is 28days. The animal was sacrificed at the 3rd, 7th, 14th, 28th day after the operation. The distracted bone was examined by histological analysis and RT-PCR analysis. The results were summarized as follows: 1. Experimental group was observed that the gaps between the distracted bone edges were occupied by new bone. 2. Expression of Type I collagen were detected throughout the experiment in both groups and Expression of Type I collagen were markedly increased during distraction and consolidation period in experimental group than control group. 3. Expression of Type II collagen were detected throughout the experiment in both groups and expression of Type II collagen were maintained at high level during distraction and consolidation period in experimental group than control group. From these results, in contrast to type II collagen, type I collagen seemed to be more expressed by mechanical stimuli during distraction and consolidation period. The predominent mechanism of new bone formation in the distraction gap was intramembranous bone formation, but some of the regenerated bone was formed by endochondral ossification.

IGF1 potentiates BMP9-induced osteogenic differentiation in mesenchymal stem cells through the enhancement of BMP/Smad signaling

  • Chen, Liang;Zou, Xiang;Zhang, Ran-Xi;Pi, Chang-Jun;Wu, Nian;Yin, Liang-Jun;Deng, Zhong-Liang
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • Engineered bone tissue is thought to be the ideal alternative for bone grafts in the treatment of related bone diseases. BMP9 has been demonstrated as one of the most osteogenic factors, and enhancement of BMP9-induced osteogenesis will greatly accelerate the development of bone tissue engineering. Here, we investigated the effect of insulin-like growth factor 1 (IGF1) on BMP9-induced osteogenic differentiation, and unveiled a possible molecular mechanism underling this process. We found that IGF1 and BMP9 are both detectable in mesenchymal stem cells (MSCs). Exogenous expression of IGF1 potentiates BMP9-induced alkaline phosphatase (ALP), matrix mineralization, and ectopic bone formation. Similarly, IGF1 enhances BMP9-induced endochondral ossification. Mechanistically, we found that IGF1 increases BMP9-induced activation of BMP/Smad signaling in MSCs. Our findings demonstrate that IGF1 can enhance BMP9-induced osteogenic differentiation in MSCs, and that this effect may be mediated by the enhancement of the BMP/Smad signaling transduction triggered by BMP9.