• Title/Summary/Keyword: Endangered Korean native cattle

Search Result 3, Processing Time 0.015 seconds

Assessment of cryopreserved sperm functions of Korean native brindled cattle (Chikso) from different region research centers of Korea

  • Ma, Lei;Jung, Dae-Jin;Jung, Eun-Ju;Lee, Woo-Jin;Hwang, Ju-Mi;Bae, Jeong-Won;Kim, Dae-Hyun;Yi, Jun Koo;Lee, Sang Moo;Ha, Jae Jung;Kwon, Woo-Sung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.106-115
    • /
    • 2021
  • Sperm cryopreservation is an important method of assisted reproductive techniques and storing genetic resources. It plays a vital role in genetic improvement, livestock industrial preservation of endangered species, and clinical practice. Consequently, the cryopreservation technique is well organized through various studies, especially on Korean native cattle (Hanwoo). However, the cryopreservation technique of Korean native brindled cattle, which is one of the native cattle species in Korea, is not well organized. Therefore, it is necessary to develop a Supplementary Table technique for the cryopreservation of Korean native brindled cattle. For this purpose, it is important to first evaluate the quality of the currently produced cryopreserved sperm of Korean native brindled cattle. In this study, we randomly selected 72 individual Korean native brindled cattle semen samples collected from 8 different region research centers and used them to evaluate sperm functions. We focused on the quality evaluation of cryopreserved Korean native brindled cattle semen following the measurement of motion kinematics, capacitation status, intracellular ATP level, sperm motility, and cell viability. Then, the values of each of the eight groups were derived from various sperm parameters of nine individual samples, including sperm motility, kinematics, cellular motility, and intracellular ATP levels, which were used to compare and evaluate sperm function. Overall, differences in various sperm parameters were observed between most of the research centers. Particularly, the deviations of motility and motion kinematics were high according to the sample. Therefore, we suggest that it is necessary to develop a standard method for the cryopreservation of Korean native brindled cattle semen. We also suggest the need for sperm quality evaluation of the cryopreserved semen of Korean native brindled cattle before using artificial insemination to attain a high fertility rate.

Analysis of Hematologic Characteristics of Endangered Korean Native Cattle according to the Age (성장단계별 멸종위기 희소한우의 혈액학적 특성분석)

  • Kim, Hyun;Ko, Yeoung-Gyu;Kim, Nam-Tae;Choe, Changyong;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.39 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • The importance of genetic resource preservation has been highlighted in the literature as a means of maintaining genetic diversity. Investigations for hematologic values and the differential count of white blood cell count (WBC) for Korean indigenous cattle (KIC) and endangered indigenous cattle (EIC) are rarely performed. Therefore, the objective of this study was to investigate the hematologic values of total 40 EIC (White, Black, Mini cattle) and 35 KIC as control by analysis of hematologic characteristics. As a result, the mean values of RBC and platelet of EIC were significantly decreased by age (p<0.05). The mean values of RBC, HCT, MCV and MCHC between EIC and KIC of the same age (2~3 years) showed the statistical significance (p<0.05). Also, in the WBC of EIC, the mean values were decreased according to the age from $13.9{\times}10^3/{\mu}L{\sim}12.7{\times}10^3/{\mu}L$ under 1 year to $9.1{\times}10^3/{\mu}L{\sim}11.5{\times}10^3/{\mu}L$ over 2 years respectively. In the differential count of WBC of EIC (White, Black, Mini cattle), it showed generally the rates of 40.2%, 52.2%, 49.0% lymphocyte and 27.2%, 33.9%, 32.0% segmented neutrophil from 2~3 years respectively. Result of this study will be used for establishing reference range for blood analysis in EIC such as white, black and mini cattle. This study reported hematological values which could serve as baseline information for comparison in conditions of nutrient deficiency, physiological and health status of endangered Korean native cattle. In addition, this study provides a valuable resource for further investigations of the preservation of rare genetic stocks underlying traits of interest in cattle.

Analysis of Growth and Hematologic Characteristics of Endangered Korean Native Cattle (멸종위기의 백한우(체세포복제 포함)의 성장 및 혈액학적 특성 분석)

  • Kim, Hyun;Choe, Changyong;Seong, Hwan-Hoo
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • The objective of this study was to monitor health conditions of genetically identical somatic cells cloned Korean white cattle, endangered indigenous cattle (EIC) and indigenous cattle (IC) by analysis of hematologic characteristics. Naturally ovulated oocytes and donor cells were used for somatic cell nuclear transfer (SCNT). Donor cells and enucleated oocytes were followed by electric fusion, chemical activation and surgical embryo transfer into the oviducts of surrogate females. Two recipients became pregnant; two maintained pregnancy to term, and one live cattle were delivered by caesarean section. The cloned Korean white cattle were genetically identical to the nuclear donor cattle. As a result, the mean values of RBC and platelet of cloned cattle and white cattle were significantly decreased by age (P<0.05). The mean values of RBC, HCT, MCV and MCHC between cloned cattle and IC of the same age (1~2 years) showed the statistical significance (P<0.05). Also, in the WBC of Korean white cattle, the estimated values were decreased according to the age from $12.0{\times}10^3/{\mu}l$ under 1 year to $11.0{\times}10^3/{\mu}l$ over 1 years respectively. Although clone-cattle had lower numbers of RBC than reference range, the most of RBC and WBC related heamatologic results of cloned cattle were not different when compared to reference range. This study suggests that cloned Korean white cattle derived from SCNT did not have remarkable health problems, at least in the growth pattern and hematological parameters. In addition, this study provides a valuable resource for further investigations of the preservation of rare genetic stocks underlying traits of interest in cattle.