• Title/Summary/Keyword: End-to-End Throughput

Search Result 262, Processing Time 0.025 seconds

Performance Analysis of the SSCOP in B-ISDN (B-ISDN SSCOP의 성능 분석)

  • 장성철;민상원;정해원;은종관;김용진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.892-900
    • /
    • 1994
  • Recently, ITU-TSS recommends a service specific connection oriented protocol (SSCOP) which assures the successful transmission of signalling information for B-ISDN. In the SSCOP, there is a mechanism to exchange periodically status informations for both error and flow controls. In this paper, we analyze the SSCOP with a discrete-time queueing model. We consider two cases for link-by-link and end-to-end controls. As the performance measures, we investigate delay, throughput, and buffer size of the receiver. The average values of these measures are analyzed with respect to the loss probability of messages, the traffic load, and the exchange period of status information. We also verify the accuracy of this model with simulations.

  • PDF

Multi-Channel Pipelining for Energy Efficiency and Delay Reduction in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 지연 감소를 위한 다중 채널 파리프라인 기법)

  • Lee, Yoh-Han;Kim, Daeyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.11-18
    • /
    • 2014
  • Most of the energy efficient MAC protocols for wireless sensor networks (WSNs) are based on duty cycling in a single channel and show competitive performances in a small number of traffic flows; however, under concurrent multiple flows, they result in significant performance degradation due to contention and collision. We propose a multi-channel pipelining (MCP) method for convergecast WSN in order to address these problems. In MCP, a staggered dynamic phase shift (SDPS) algorithms devised to minimize end-to-end latency by dynamically staggering wake-up schedule of nodes on a multi-hop path. Also, a phase-locking identification (PLI) algorithm is proposed to optimize energy efficiency. Based on these algorithms, multiple flows can be dynamically pipelined in one of multiple channels and successively handled by sink switched to each channel. We present an analytical model to compute the duty cycle and the latency of MCP and validate the model by simulation. Simulation evaluation shows that our proposal is superior to existing protocols: X-MAC and DPS-MAC in terms of duty cycle, end-to-end latency, delivery ratio, and aggregate throughput.

A Cost-Aware Multi-path DSDV Routing Protocol in Wireless Mesh Networks (무선 메쉬 네트워크에서 비용 인지 다중 경로 DSDV 라우팅 프로토콜)

  • Lee, Seong-Woong;Chung, Yun-Won
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.289-296
    • /
    • 2008
  • In wireless mesh network, studies on routing protocols have been actively carried out recently, and hop count is used as a major routing metric in destination-sequenced distance-vector (DSDV) routing protocol, which is a representative proactive routing protocol. Although hop-by-hop multi-path (HMP) DSDV and enhanced HMP (EHMP) DSDV routing protocols perform routing by considering both hop count and residual bandwidth within one hop distance nodes, it has a shortcoming that routing is carried out via non-optimal path from the aspect of end-to-end routing. In order to overcome the shortcoming, a cost-aware multi-path (CAMP) DSDV routing protocol is proposed in this paper, which considers hop count and end-to-end minimum residual bandwidth. Simulation results based on NS-2 show that the proposed routing protocol performs better than DSDV, HMP DSDV, and EHMP DSDV protocols from the aspect of throughput and packet delivery ratio, by appropriately using hop count and end-to-end minimum residual bandwidth information and has the same number of management messages with HMP DSDV and EHMP DSDV protocols.

Finite-Horizon Online Transmission Scheduling on an Energy Harvesting Communication Link with a Discrete Set of Rates

  • Bacinoglu, Baran Tan;Uysal-Biyikoglu, Elif
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.293-300
    • /
    • 2014
  • As energy harvesting communication systems emerge, there is a need for transmission schemes that dynamically adapt to the energy harvesting process. In this paper, after exhibiting a finite-horizon online throughput-maximizing scheduling problem formulation and the structure of its optimal solution within a dynamic programming formulation, a low complexity online scheduling policy is proposed. The policy exploits the existence of thresholds for choosing rate and power levels as a function of stored energy, harvest state and time until the end of the horizon. The policy, which is based on computing an expected threshold, performs close to optimal on a wide range of example energy harvest patterns. Moreover, it achieves higher throughput values for a given delay, than throughput-optimal online policies developed based on infinite-horizon formulations in recent literature. The solution is extended to include ergodic time-varying (fading) channels, and a corresponding low complexity policy is proposed and evaluated for this case as well.

IRSML: An intelligent routing algorithm based on machine learning in software defined wireless networking

  • Duong, Thuy-Van T.;Binh, Le Huu
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.733-745
    • /
    • 2022
  • In software-defined wireless networking (SDWN), the optimal routing technique is one of the effective solutions to improve its performance. This routing technique is done by many different methods, with the most common using integer linear programming problem (ILP), building optimal routing metrics. These methods often only focus on one routing objective, such as minimizing the packet blocking probability, minimizing end-to-end delay (EED), and maximizing network throughput. It is difficult to consider multiple objectives concurrently in a routing algorithm. In this paper, we investigate the application of machine learning to control routing in the SDWN. An intelligent routing algorithm is then proposed based on the machine learning to improve the network performance. The proposed algorithm can optimize multiple routing objectives. Our idea is to combine supervised learning (SL) and reinforcement learning (RL) methods to discover new routes. The SL is used to predict the performance metrics of the links, including EED quality of transmission (QoT), and packet blocking probability (PBP). The routing is done by the RL method. We use the Q-value in the fundamental equation of the RL to store the PBP, which is used for the aim of route selection. Concurrently, the learning rate coefficient is flexibly changed to determine the constraints of routing during learning. These constraints include QoT and EED. Our performance evaluations based on OMNeT++ have shown that the proposed algorithm has significantly improved the network performance in terms of the QoT, EED, packet delivery ratio, and network throughput compared with other well-known routing algorithms.

Distributed Multi-channel Assignment Scheme Based on Hops in Wireless Mesh Networks (무선 메쉬 네트워크를 위한 홉 기반 분산형 다중 채널 할당 방안)

  • Kum, Dong-Won;Choi, Jae-In;Lee, Sung-Hyup;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • In wireless mesh networks (WMNs), the end-to-end throughput of a flow decreases drastically according to the traversed number of hops due to interference among different hops of the same flow in addition to interference between hops of different flows with different paths. This paper proposes a distributed multi-channel assignment scheme based on hops (DMASH) to improve the performance of a static WMN. The proposed DMASH is a novel distributed multi-channel assignment scheme based on hops to enhance the end-to-end throughput by reducing interference between channels when transmitting packets in the IEEE 802.11 based multi-interface environments. The DMASH assigns a channel group to each hop, which has no interference between adjacent hops from a gateway in channel assignment phase, then each node selects its channel randomly among the channel group. Since the DMASH is a distributed scheme with unmanaged and auto-configuration of channel assignment, it has a less overhead and implementation complexity in algorithm than centralized multi-channel assignment schemes. Simulation results using the NS-2 showed that the DMASH could improve remarkably the total network throughput in multi-hop environments, comparing with a random channel assignment scheme.

Development of Protective Scheme against Collaborative Black Hole Attacks in Mobile Ad hoc Networks

  • Farooq, Muhammad Umar;Wang, Xingfu;Sajjad, Moizza;Qaisar, Sara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1330-1347
    • /
    • 2018
  • Mobile Ad hoc Network (MANET) is a collection of nodes or communication devices that wish to communicate without any fixed infrastructure and predetermined organization of available links. The effort has been made by proposing a scheme to overcome the critical security issue in MANET. The insufficiency of security considerations in the design of Ad hoc On-Demand Distance Vector protocol makes it vulnerable to the threats of collaborative black hole attacks, where hacker nodes attack the data packets and drop them instead of forwarding. To secure mobile ad hoc networks from collaborative black hole attacks, we implement our scheme and considered sensor's energy as a key feature with a better packet delivery ratio, less delay time and high throughput. The proposed scheme has offered an improved solution to diminish collaborative black hole attacks with high performance and benchmark results as compared to the existing schemes EDRIAODV and DRIAODV respectively. This paper has shown that throughput and packet delivery ratio increase while the end to end delay decreases as compared to existing schemes. It also reduces the overall energy consumption and network traffic by maintaining accuracy and high detection rate which is more safe and reliable for future work.

Improving Performance of Remote TCP in Cognitive Radio Networks

  • Yang, Hyun;Cho, Sungrae;Park, Chang Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2323-2340
    • /
    • 2012
  • Recent advances in cognitive radio technology have drawn immense attention to higher layer protocols above medium access control, such as transmission control protocol (TCP). Most proposals to improve the TCP performance in cognitive radio (CR) networks have assumed that either all nodes are in CR networks or the TCP sender side is in CR links. In those proposals, lower layer information such as the CR link status could be easily exploited to adjust the congestion window and improve throughput. In this paper, we consider a TCP network in which the TCP sender is located remotely over the Internet while the TCP receiver is connected by a CR link. This topology is more realistic than the earlier proposals, but the lower layer information cannot be exploited. Under this assumption, we propose an enhanced TCP protocol for CR networks called TCP for cognitive radio (TCP-CR) to improve the existing TCP by (1) detection of primary user (PU) interference by a remote sender without support from lower layers, (2) delayed congestion control (DCC) based on PU detection when the retransmission timeout (RTO) expires, and (3) exploitation of two separate scales of the congestion window adapted for PU activity. Performance evaluation demonstrated that the proposed TCP-CR achieves up to 255% improvement of the end-to-end throughput. Furthermore, we verified that the proposed TCP does not deteriorate the fairness of existing TCP flows and does not cause congestions.

Performance Variations of AODV, DSDV and DSR Protocols in MANET under CBR Traffic using NS-2.35

  • Chandra, Pankaj;Soni, Santosh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.13-20
    • /
    • 2022
  • Basically Mobile Ad Hoc Network (MANET) is an autonomous system with the collection of mobile nodes, these nodes are connected to each other by using wireless networks. A mobile ad hoc network poses this quality which makes topology in dynamic manner. As this type of network is Ad Hoc in nature hence it doesn't have fixed infrastructure. If a node wishes to transfer data from source node to a sink node in the network, the data must be passed through intermediate nodes to reach the destination node, hence in this process data packet loss occurs in various MANET protocols. This research study gives a comparison of various Mobile Ad Hoc Network routing protocols like proactive (DSDV) and reactive (AODV, DSR) by using random topology with more intermediate nodes using CBR traffic. Our simulation used 50, 100, and 150 nodes variations to examine the performance of the MANET routing protocols. We compared the performance of DSDV, AODV and DSR, MANET routing protocols with the result of existing protocol using NS-2 environment, on the basis of different performance parameters like Packet Delivery Ratio, average throughput and average end to end delay. Finally we found that our results are better in terms of throughput and packet delivery ratio along with low data loss.

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.