• Title/Summary/Keyword: End-to-End Throughput

Search Result 262, Processing Time 0.022 seconds

Network Coding delay analysis under Dynamic Traffic in DCF without XOR and DCF with XOR (DCF와 DCF with XOR에서 동적인 트래픽 상태에 따른 네트워크 코딩 지연시간 분석)

  • Oh, Ha-Young;Lee, Junjie;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.251-255
    • /
    • 2009
  • Network coding is a promising technology that increases the system throughput via reducing the number of transmission for a packet delivered from the source node to the destination node. Nevertheless, it suffers from the metrics of end-to-end delay. Network Coding scheme takes more processing delay which occurs as coding node encodes (XOR) a certain number of packets that relayed by the coding node, and more queuing delay which occurs as a packet waits for other packets to be encoded with. Therefore, in this paper, we analyze the dependency of the queuing delay to the arrival rate of each packet. In addition, we analyze and compare the delay in DCF without XOR and DCF with XOR under dynamic traffic.

A TCP Fairness Guarantee Scheme with Dynamic Advertisement Window Adjustment for Mobile Broadband Wireless Access Networks (이동 광대역 무선 접속 네트워크에서 동적 Advertisement Window 조절을 통한 TCP Fairness 보장 기법)

  • Kim, Seong-Chul;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.154-163
    • /
    • 2008
  • In a mobile broadband wireless access (MBWA) network, many users access a base station (BS), which relays data transferred from high-speed wired network to low-speed wireless network. For this difference of their data rate, a BS suffers from the lack of its buffer space when many users run multiple applications at the same time, and thus packet losses occur. TCP, which guarantees end-to-end reliability, is used as transport protocol also in wireless networks. But TCP lowers their transmission rate incorrectly and frequently whenever packet losses occur. And they increase their transmission rate differently with each other; finally TCP throughput of each TCP flow varies largely, and then TCP fairness goes worse. In this paper, a scheme that controls packet transmission rate adaptively according to TCP flows' transmission rate, that prevents buffer overflows at BS, and that guarantees TCP fairness at a certain degree is proposed. As it is analyzed by simulations, the proposed scheme enhances TCP fairness by maintaining TCP throughput of each TCP sender similarly with each other.

  • PDF

Packet Scheduling Scheme and Receiver-Based Recovery Scheme for MPTCP in Heterogeneous Networks (이종망에서 MPTCP를 위한 패킷 스케줄링 방법과 수신단 기반의 손실 복구 방법)

  • Oh, Bong-Hwan;Kim, Hanah;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.975-983
    • /
    • 2012
  • Multi network interface has become common phenomenon for mobile devices such as smart phone which has 3G, LTE-advanced, WiFi. Consequently, there are researches for a transmission strategies using multiple paths below on end-to-end connection. MPTCP which is proposed and being standardized by the IETF as a new transport protocol can perform concurrent multipath transfer using multiple network interfaces. However, current MPTCP has performance degradation when it use heterogeneous networks which have quite different network characteristics. Therefore, this paper proposes the packet scheduling scheme and receiver-based recovery scheme to reduce the performance degradation due to reordering problem. Also, simulation results show that the proposed scheme can improve throughput and retransmission performance.

Performance of Multiple-Relay Cooperative Communication Networks under Soft-Decision-and-Forward Protocol (연판정 후 전송 방식을 적용한 다중 안테나 다중 릴레이 협동통신망의 성능 분석)

  • Song, Kyoung-Young;No, Jong-Seon;Kim, Tae-Guen;Sung, Joon-Hyun;Rim, Min-Joong;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.431-439
    • /
    • 2010
  • In this paper, multiple-relay cooperative communication network with multiple antennas is considered. Applying the soft-decision-and-forward protocol to this system, pairwise error probability(PEP) is derived and then symbol error rate(SER) is also calculated. However, in general, signals are transmitted through the orthogonal channel in the multiple-relay cooperative communication network for the prevention of interference, which is inefficient in terms of the throughput. For the improvement of throughput, the relay selection is considered, where the relay having the maximum instantaneous end-to-end signal-to-noise ratio is chosen. Performance of the system is analyzed in terms of PEP and SER. As the number of the relay increases, relay selection method outperforms the conventional multiple-relay transmission system where all relays participate in the second time slot.

Real-Time Transmission Scheme for Ad Hoc Self-Organizing (ASO) TDMA in Multi-Hop Maritime Communication Network (Ad Hoc Self-Organizing (ASO) TDMA 방식 다중-홉 해양통신망에서의 실시간 전송 기법)

  • Cho, Kumin;Yun, Changho;Lim, Yong-Kon;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.260-270
    • /
    • 2014
  • In this paper, we first analyze the delay performance of Dynamic Space-time Subframe (DSTS)-based frame structure which has been proposed to support the real-time service as well as non real-time service, using Ad hoc Self-Organizing Time Division Multiple Access (ASO-TDMA) MAC protocol, especially when transmitting a MAC SDU with two or more MAC PDUs, in a multi-hop ad-hoc maritime communication network. We propose two key transmission schemes: contiguous DSTS reservation which guarantees the end-to-end delay for the multiple PDUs, and adaptive transmission probability control schemes to maximize the system throughput. Our simulation results show that the proposed schemes outperform the system throughput of the existing transmission schemes, while supporting the real-time requirement.

Behavior based Routing Misbehavior Detection in Wireless Sensor Networks

  • Terence, Sebastian;Purushothaman, Geethanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5354-5369
    • /
    • 2019
  • Sensor networks are deployed in unheeded environment to monitor the situation. In view of the unheeded environment and by the nature of their communication channel sensor nodes are vulnerable to various attacks most commonly malicious packet dropping attacks namely blackhole, grayhole attack and sinkhole attack. In each of these attacks, the attackers capture the sensor nodes to inject fake details, to deceive other sensor nodes and to interrupt the network traffic by packet dropping. In all such attacks, the compromised node advertises itself with fake routing facts to draw its neighbor traffic and to plunge the data packets. False routing advertisement play vital role in deceiving genuine node in network. In this paper, behavior based routing misbehavior detection (BRMD) is designed in wireless sensor networks to detect false advertiser node in the network. Herein the sensor nodes are monitored by its neighbor. The node which attracts more neighbor traffic by fake routing advertisement and involves the malicious activities such as packet dropping, selective packet dropping and tampering data are detected by its various behaviors and isolated from the network. To estimate the effectiveness of the proposed technique, Network Simulator 2.34 is used. In addition packet delivery ratio, throughput and end-to-end delay of BRMD are compared with other existing routing protocols and as a consequence it is shown that BRMD performs better. The outcome also demonstrates that BRMD yields lesser false positive (less than 6%) and false negative (less than 4%) encountered in various attack detection.

A Dynamic Queue Management for Network Coding in Mobile Ad-hoc Network

  • Kim, Byun-Gon;Kim, Kwan-Woong;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • Network Coding (NC) is a new paradigm for network communication. In network coding, intermediate nodes create new packets by algebraically combining ingress packets and send it to its neighbor node by broadcast manner. NC has rapidly emerged as a major research area in information theory due to its wide applicability to communication through real networks. Network coding is expected to improve throughput and channel efficiency in the wireless multi-hop network. Many researches have been carried out to employ network coding to wireless ad-hoc network. In this paper, we proposed a dynamic queue management to improve coding opportunistic to enhance efficiency of NC. In our design, intermediate nodes are buffering incoming packets to encode queue. We expect that the proposed algorithm shall improve encoding rate of network coded packet and also reduce end to end latency. From the simulation, the proposed algorithm achieved better performance in terms of coding gain and packet delivery rate than static queue management scheme.

Clustering-Based Mobile Gateway Management in Integrated CRAHN-Cloud Network

  • Hou, Ling;Wong, Angus K.Y.;Yeung, Alan K.H.;Choy, Steven S.O.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2960-2976
    • /
    • 2018
  • The limited storage and computing capacity hinder the development of cognitive radio ad hoc networks (CRAHNs). To solve the problem, a new paradigm of cloud-based CRAHN has been proposed, in which a CRAHN will make use of the computation and storage resources of the cloud. This paper envisions an integrated CRAHN-cloud network architecture. In this architecture, some cognitive radio users (CUs) who satisfy the required metrics could perform as mobile gateway candidates to connect other ordinary CUs with the cloud. These mobile gateway candidates are dynamically clustered according to different related metrics. Cluster head and time-to-live value are determined in each cluster. In this paper, the gateway advertisement and discovery issues are first addressed to propose a hybrid gateway discovery mechanism. After that, a QoS-based gateway selection algorithm is proposed for each CU to select the optimal gateway. Simulations are carried out to evaluate the performance of the overall scheme, which incorporates the proposed clustering and gateway selection algorithms. The results show that the proposed scheme can achieve about 11% higher average throughput, 10% lower end-to-end delay, and 8% lower packet drop fractions compared with the existing scheme.

A Study on the Network Topology Algorithms for ISDN (종합정보 통신망을 위한 네트워크 토폴로지 알고리듬에 관한 연구)

  • Kim, Jung-Gyu;Jeon, Sang-Hyeon;Park, Mign-Yong;Lee, Sang-Bae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.86-94
    • /
    • 1990
  • This paper suggests a unified packet telecommunication network, which is designed by applying network design algorithm and distribution network design algorithm, Proposed local network design algorithm is based on MST topology, and it can satisfy the limited capacity and get a distribution effect of communication flow, With the result of the comparison with Kruskal and Esau-Willams algorithm, an increase of 2.7% in cost and a decrease of 44.8% in average delay time are shown. Starting with MST topology, proposed distribution network design algorithm gradually increases its reliability, and proposes a conclusive algorithm to determine a topology with minimum cost. In compared with Cut-Saturation algorithm in the aspect of end-to-end delay time and communication flow restricted condition, this proposed algorithm results in 1/7 cost down and about 2.5 times increases in Throughput.

  • PDF

FTCARP: A Fault-Tolerant Routing Protocol for Cognitive Radio Ad Hoc Networks

  • Che-aron, Zamree;Abdalla, Aisha Hassan;Abdullah, Khaizuran;Rahman, Md. Arafatur
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.371-388
    • /
    • 2014
  • Cognitive Radio (CR) has been recently proposed as a promising technology to remedy the problems of spectrum scarcity and spectrum underutilization by enabling unlicensed users to opportunistically utilize temporally unused licensed spectrums in a cautious manner. In Cognitive Radio Ad Hoc Networks (CRAHNs), data routing is one of the most challenging tasks since the channel availability and node mobility are unpredictable. Moreover, the network performance is severely degraded due to large numbers of path failures. In this paper, we propose the Fault-Tolerant Cognitive Ad-hoc Routing Protocol (FTCARP) to provide fast and efficient route recovery in presence of path failures during data delivery in CRAHNs. The protocol exploits the joint path and spectrum diversity to offer reliable communication and efficient spectrum usage over the networks. In the proposed protocol, a backup path is utilized in case a failure occurs over a primary transmission route. Different cause of a path failure will be handled by different route recovery mechanism. The protocol performance is compared with that of the Dual Diversity Cognitive Ad-hoc Routing Protocol (D2CARP). The simulation results obviously prove that FTCARP outperforms D2CARP in terms of throughput, packet loss, end-to-end delay and jitter in the high path-failure rate CRAHNs.