• Title/Summary/Keyword: End-moment

Search Result 411, Processing Time 0.023 seconds

Adopting flexibility of the end-plate connections in steel moment frames

  • Ghassemieh, M.;Baei, M.;Kari, A.;Goudarzi, A.;Laefer, D.F.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1215-1237
    • /
    • 2015
  • The majority of connections in moment resisting frames are considered as being fully-rigid. Consequently, the real behavior of the connection, which has some level of flexibility, is ignored. This may result in inaccurate predictions of structural response. This study investigates the influence of flexibility of the extended end-plate connections in the steel moment frames. This is done at two levels. First, the actual micro-behavior of extended end-plate moment connections is explored with respect to joint flexibility. Then, the macro-behavior of frames with end-plate moment connections is investigated using modal, nonlinear static pushover and incremental dynamic analyses. In all models, the P-Delta effects along with material and geometrical nonlinearities were included in the analyses. Results revealed considerable differences between the behavior of the structural frame with connections modeled as fully-rigid versus those when flexibility was incorporated, specifically difference occurred in the natural periods, strength, and maximum inter-story drift angle.

Experimental Study on Behaviour of Composite Beams with Ribbed Slabs and Unreinforced Web Openings (리브형 슬래브를 갖는 유공합성보의 거동에 관한 실험적 연구)

  • 김창호;박종원;김희구;이창섭;박준용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.989-994
    • /
    • 2000
  • Nine tests to failure are performed on full-scale eight composite beams with unreinforced web opening having ribbed slabs with formed deck which are perpendicular to the steel section and one steel beam. The effects of slab width, reinforcing of stud, moving of rib, moment-shear ratio are studied. At the low M/V ratio, Vierendeel action around the high moment end of the opening is occurred and the large deflection across the opening and transverse cracking are occurred with increasing of applied load. As the M/V ratio increases, the relative deflection across the opening decreases. And at failure, full tensile strain are occurred at bottom T section of steel beam, and concrete crushes at the High Moment End of the opening. With narrow slabs, diagonal tension failure at the high moment end of the opening is occurred. And with wide slabs, rib punch-through failure is occurred near the high moment end of the opening. The implications for design are discussed.

COMPLETE f-MOMENT CONVERGENCE FOR EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES UNDER SUB-LINEAR EXPECTATIONS

  • Lu, Chao;Wang, Rui;Wang, Xuejun;Wu, Yi
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1485-1508
    • /
    • 2020
  • In this paper, we investigate the complete f-moment convergence for extended negatively dependent (END, for short) random variables under sub-linear expectations. We extend some results on complete f-moment convergence from the classical probability space to the sub-linear expectation space. As applications, we present some corollaries on complete moment convergence for END random variables under sub-linear expectations.

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

Seismic Tests of Steel Beam-to-column Moment Connections with Inclined End-plate Beam Splice (경사단부강판 보 이음을 갖는 강재 보-기둥 모멘트접합부의 내진실험)

  • Lim, Jong Jin;Kim, Dong Gwan;Lee, Sang Hyun;Park, Choul Soo;Lee, Chang Nam;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.181-192
    • /
    • 2017
  • A beam splice method using inclined end-plates and high-strength tension bolts was developed. The end-plates welded to a bracket and a spliced beam are connected each other by using the tension bolts. In the present study, six exterior beam-to-column moment connections were tested under cyclic loading. Test parameters were the end-plate details and bolt arrangements. All specimens were designed so that moment resistances of the end-plates and bolts were greater than the required moment at the beam splice, in accordance with the design methods of AISC Design Guide 4. Test results showed that in the beam splices with the extended end-plates, the beam moment successfully transferred to the bracket, without any defeats such as excessive prying action of the end plates and brittle failure at the end plate-to-beam flange weld joints. However, the deformation capacities of the overall beam-to-column connections were limited due to the brittle failure of the beam-to-column flange weld joints. From the test results, recommendations for seismic design and detailing of the beam-to-column moment connection with inclined end-plate beam splice were given.

COMPLETE CONVERGENCE AND COMPLETE MOMENT CONVERGENCE THEOREMS FOR WEIGHTED SUMS OF ARRAYS OF ROWWISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES

  • Huang, Haiwu;Zhang, Qingxia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1007-1025
    • /
    • 2019
  • In the present work, the complete convergence and complete moment convergence properties for arrays of rowwise extended negatively dependent (END) random variables are investigated. Some sharp theorems on these strong convergence for weighted sums of END cases are established. These main results not only generalize the known corresponding ones of Cai [2], Wang et al. [17] and Shen [14], but also improve them, respectively.

Exact solutions of variable-arc-length elasticas under moment gradient

  • Chucheepsakul, Somchai;Thepphitak, Geeraphong;Wang, Chien Ming
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.529-539
    • /
    • 1997
  • This paper deals with the bending problem of a variable-are-length elastica under moment gradient. The variable are-length arises from the fact that one end of the elastica is hinged while the other end portion is allowed to slide on a frictionless support that is fixed at a given horizontal distance from the hinged end. Based on the elastica theory, exact closed-form solution in the form of elliptic integrals are derived. The bending results show that there exists a maximum or a critical moment for given moment gradient parameters; whereby if the applied moment is less than this critical value, two equilibrium configurations are possible. One of them is stable while the other is unstable because a small disturbance will lead to beam motion.

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi;Mohammad Reza Sohrabi;Seyed Morteza Kazemi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.31-43
    • /
    • 2024
  • A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.

Moment-rotation relationship of hollow-section beam-to-column steel joints with extended end-plates

  • Wang, Jia;Zhu, Haiming;Uy, Brian;Patel, Vipulkumar;Aslani, Farhad;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.717-734
    • /
    • 2018
  • This paper presents the flexural performance of steel beam-to-column joints composed of hollow structural section beams and columns. A finite element (FE) model was developed incorporating geometrical and material nonlinearities to evaluate the behaviour of joints subjected to bending moments. The numerical outcomes were validated with experimental results and compared with EN1993-1-8. The demountability of the structure was discussed based on the tested specimen. A parametric analysis was carried out to investigate the effects of steel yield strength, end-plate thickness, beam thickness, column wall thickness, bolt diameter, number of bolts and location. Consequently, an analytical model was derived based on the component method to predict the moment-rotation relationships for the sub-assemblies with extended end-plates. The accuracy of the proposed model was calibrated by the experimental and numerical results. It is found that the FE model is fairly reliable to predict the initial stiffness and moment capacity of the joints, while EN1993-1-8 overestimates the initial stiffness extensively. The beam-to-column joints are shown to be demountable and reusable with a moment up to 53% of the ultimate moment capacity. The end-plate thickness and column wall thickness have a significant influence on the joint behaviour, and the layout of double bolt-rows in tension is recommended for joints with extended end-plates. The derived analytical model is capable of predicting the moment-rotation relationship of the structure.

Seismic performance of moment connections in steel moment frames with HSS columns

  • Nunez, Eduardo;Torres, Ronald;Herrera, Ricardo
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.271-286
    • /
    • 2017
  • The use of Hollow Structural Sections (HSS) provides an alternative for steel buildings in seismic zones, with the advantage over WF columns that the HSS columns have similar resistance along both axes and enhanced performance under flexure, compression and torsion with respect to other columns sections. The HSS columns have shown satisfactory performance under seismic loads, such as observed in buildings with steel moment frames in the Honshu earthquake (2011). The purpose of this research is to propose a new moment connection, EP-HSS ("End-plate to Hollow Structural Section"), using a wide flange beam and HSS column where the end plate falls outside the range of prequalification established in the ANSI/AISC 358-10 Specification, as an alternative to the traditional configuration of steel moment frames established in current codes. The connection was researched through analytical, numerical (FEM), and experimental studies. The results showed that the EP-HSS allowed the development of inelastic action on the beam only, avoiding stress concentrations in the column and developing significant energy dissipation. The experiments followed the qualification protocols established in the ANSI/AISC 341-10 Specification satisfying the required performance for highly ductile connections in seismic zones, thereby ensuring satisfactory performance under seismic actions without brittle failure mechanisms.