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COMPLETE CONVERGENCE AND COMPLETE MOMENT
CONVERGENCE THEOREMS FOR WEIGHTED SUMS OF
ARRAYS OF ROWWISE EXTENDED NEGATIVELY
DEPENDENT RANDOM VARIABLES

Hatwu HUANG AND QINGXIA ZHANG

ABSTRACT. In the present work, the complete convergence and complete
moment convergence properties for arrays of rowwise extended negatively
dependent (END) random variables are investigated. Some sharp theo-
rems on these strong convergence for weighted sums of END cases are
established. These main results not only generalize the known corre-
sponding ones of Cai [2], Wang et al. [17] and Shen [14], but also improve
them, respectively.

1. Introduction

By weakening the assumptions of validity of limit theory, we provide an ex-
tension for applications of probability theory to various fields, especially to sta-
tistics research. In many statistical theoretical frameworks, we usually assume
that variables are independent. But in many practical studies, this assumption
is not plausible. And then, many researchers have revised this assumption in
order to consider dependent cases, such as negatively associated random vari-
ables, positively associated random variables, negatively orthant dependent
random variables, extended negatively dependent random variables (END),
and many others. In this work, we consider the END structure, which includes

Received August 24, 2018; Accepted January 8, 2019.

2010 Mathematics Subject Classification. 60F15.

Key words and phrases. arrays of rowwise END random variables, complete convergence,
complete moment convergence, weighted sums.

This paper is supported by the Humanities and Social Sciences Foundation for the Youth
Scholars of Ministry of Education of China (15YJCZHO066), the Science and Technology
Plan Project of Hunan Province (2016 TP1020), the Science and Technology Plan Project of
Hengyang City (2017KJ183), Application-Oriented Characterized Disciplines, Double First-
Class University Project of Hunan Province (Xiangjiaotong [2018]469), Hunan Provincial
Natural Science Foundation of China (2018JJ2006; 2018JJ4024), the National Statistical
Science Research Project of China (2018LY05) and the Scientic Research Fund of Hunan
Provincial Education Department (17A030; 18C0660).

(©2019 Korean Mathematical Society

1007



1008 H. HUANG AND Q. ZHANG

independent random variables, negatively associated random variables and neg-
atively orthant dependent random variables as special cases, and present some
sharp results on complete convergence and complete moment convergence for
weighted sums of arrays of rowwise END random variables.

Firstly, let us recall some concepts of dependent structures.

Definition 1.1. A finite collection of random variables X1, X, ..., X, is said
to be negatively associated (NA) if for every pair of disjoint subsets A; and
As of {1,2,...,n} and any real non-decreasing functions f; on R4t and f, on
RA2,

(1.1) Cov (f1 (Xi,i € A1), f2 (X}, 5 € Ag)) <

whenever the covariance exists. An infinite collection of random variables
{X,,n > 1} is NA if every finite sub-collection is NA.

Definition 1.2. A finite collection of random variables X1, X5, ..., X, is said
to be negatively orthant dependent (NOD) if all z1,zs,...,2, € R,

(12) P(Xlgl'l,XQSZL’Q,...,XnSZEn H X <£L’j
and
(1.3) P(X) > 21, Xy > Tg, ..., Xn > ) gH (X; > z;).

An infinite sequence of random variables {X,,n > 1} is said to be NOD if
every finite sub-family is NOD. An array of random variables {X,;;1 < i <
n,n > 1} is called rowwise NOD if for every n > 1, {X,;,1 < i < n} is a
sequence of NOD random variables.

The concept of extended negatively dependent random variables was intro-
duced by Liu [9] as follows.

Definition 1.3. A finite collection of random variables X1, X», ..., X, is said
to be extended negatively dependent (END) if there exists a constant C' > 0
such that both inequalities

P(Xl > x1, X9 >.’E2,...7Xn >.’En) SCHP(XZ >(Ei)
i=1

and
n

P(X; <x1,Xp <29,..., X,y S yy) < CHP(Xi <)
i=1
hold for all real numbers x1,xs,...,x,. An infinite sequence of random vari-
ables {X,,,n > 1} is said to be END if every finite sub-collection is END.
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An array of random variables {X,;;1 < ¢ < m,n > 1} is called rowwise
END random variables if for every n > 1,{X,;,1 < i < n} are END random
variables.

Obviously, the NOD structure is a special case of the END structure with
C = 1. In other words, the END structure is superordinate to the NOD struc-
ture which was introduced by Lehmann [8] and after developed by Ebrahimi
and Ghosh [5] (cf. also Joag-Dev and Proschan [7]).

Note that Joag-Dev and Proschan [7] proved that NA random variables must
be NOD (but NOD is not necessarily NA); thus NA random variables are also
END. Many well known multivariate distributions possess the NA property.
Hence, extending and improving the limit theory of NA and NOD structures
to the wider END case are of interest in theoretical research and applications.

The END structure can reflect not only a negative dependence structure but
also a positive one to some extent. Liu [9] pointed out that some sequences of
END random variables obey both negatively and positively dependent proper-
ties, and provided some interesting specific examples to support this idea.

Since the paper of Liu [9] appeared, many applications of END random vari-
ables have been found in various aspects by many authors. For example, Liu
[10] studied the sufficient and necessary conditions of moderate deviations for
END random variables with heavy tails; Chen et al. [3] established the strong
law of large numbers for END random variables and showed applications to risk
theory and renewal theory; Shen [13] presented some probability inequalities
for END random variables and gave some applications; Wang and Wang [19]
investigated the extended precise large deviations of random sums in the pres-
ence of END structure and consistent variation; Wu and Guan [26] presented
some convergence properties for the partial sums of END random variables;
Wang and Wang [20] investigated a more general precise large deviation re-
sult for random sums of END real-valued random variables in the presence of
consistent variation; Qiu et al. [12], Wang et al. [16,18,21] and Hu et al. [6] pro-
vided some results on complete convergence for END random variables; Wu et
al. [25,27] established the complete moment convergence for arrays of rowwise
END random variables; Wang et al. [22] studied the complete consistency for
the estimator of nonparametric regression models based on END errors, and
many others.

Recently, Wang et al. [17] established the following theorems, which extended
the result of Cai [2] for NA random variables to NOD cases without assumption
of identical distribution.

Theorem A. Let {X,;;1 <i<n,n> 1} be an array of rowwise NOD random
variables which is stochastically dominated by a random variable X, and let
{ani;i > 1,n > 1} be an array of real numbers satisfying > ., |ani|™ = O (n‘s)
for some § with 0 < § < 1 and some o with 0 < a < 2. b, = nl/a(logn)1/7
for some v > 0. Assume that EX,; =0 if 1 < a < 2. Then for some h > 0
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and v > 0, E(exp(h|X|7)) < oo implies

~ j
ap—2
(1.4) nzln P==p <1I£Ja§n E_l aniXni

where ap > 1.

>5bn><oo for Y e >0,

Theorem B. Under the conditions of Theorem A, let {an;;i > 1,n > 1}
be an array of real numbers satisfying > i, lani|® = O (n) for some a with
0 < o< 2. Then for some h >0 and v > 0, E(exp(h|X|")) < oo implies

o J
-1
(1.5) E_ln P (ggjagxn Eﬂ aniXni

Shen [14] also investigated the complete convergence for weighted sums of
arrays of rowwise NOD random variables.

>ebn><oo for ¥ e>0.

Theorem C. Let {X,;;1 <i<mn,n>1} be an array of rowwise NOD random
variables which is stochastically dominated by a random wvariable X, and let
{ani;i > 1,n > 1} be an array of real numbers satisfying > ., |an;|” = O (n)
for some o with 0 < o < 2. b, = nl/"‘(logn)l/W for some v > 0. Then the
following statements hold:

(1) If a > 7, then E|X|* < oo implies

n=1 i=1

(2) If a = 7, then E|X|*log™ | X| < oo implies (1.6).
(3) If < 7, then E|X|" < oo implies (1.6).

>5bn> < oo for Ve > 0.

Theorem D. Under the conditions of Theorem C, E|X|ﬁ < oo for some
B>a+2and0 < a <2 implies (1.5).

The main purpose of this work is further to study complete convergence
and complete moment convergence for END random variables. We establish
some sharp results on these strong convergence properties for weighted sums
of arrays of rowwise END random variables under some mild conditions, which
extend and improve the known corresponding ones of Cai [2] for NA random
variables, Wang et al. [17] and Shen [14] for NOD random variables to END
cases, respectively.

Throughout this paper, the symbol C' represents positive constant which
may be different in various places, a,, = O (b,,) stands for a,, < Cb,,, I (4) be
the indicator function of a set A.

2. Preliminaries

In this section, we will state the definition of stochastical domination and
some important lemmas, which are used to prove the main results.
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Definition 2.1. An array of random variables {X,,;;¢ > 1,n > 1} is said to be
stochastically dominated by a random variable X if there exists some positive
constant C' such that
(2.1) sup P (| X, >2) <CP(|X|>=x) for Va>0.

i>1,n>1
Lemma 2.1 (Liu [10]). Let {X,,n > 1} be a sequence of END random vari-

ables, and {f,,n > 1} be a sequence of Borel functions all of which are mono-
tone increasing. Then {f,(Xn),n > 1} is a sequence of END random variables.

Lemma 2.2 (Shen [13], Liu et al. [11]). Let {X,,,n > 1} be a sequence of END
random variables with mean zero and E|X,|M < oo for M > 2. Then there
exists a positive constant C' depending only on M such that for alln > 1,

" M n " M/2
(2.2) E(]D X <c | EXxM+ (Z EX?) ,
=1 i=1 i=1
j M n n M/2
M M 2
. 1)< ; .
(2.3) E max. ;X <C(log2n) ;E|Xl| +<;EX>

Remark 2.1. For the case of NOD random variables, Lemmas 2.1 and 2.2 have
been established in Ebrahimi and Ghosh [5], Asadian et al. [1] and Wu [24],
respectively.

Lemma 2.3 (Wu [23]). Let {X,;;i > 1,n > 1} be an array of random variables
which is stochastically dominated by a random variable X. For all u > 0 and
t > 0, the following two statements hold:

(2.4) B Xoni|*I(| Xni| <) < CEIX|*I(|X]| <) +t°P(|X] > 1)),

(2.5) BIXul (X0l > 1) < CE|X[“I(X] > ).

With the above Lemma 2.3 accounted for, the following results can been
obtained immediately.

Lemma 2.4. Let {X,;;4 > 1,n > 1} be an array of random variables which
is stochastically dominated by a random variable X, and let {an;;i > 1,n > 1}
be an array of real constants. Then for all w > 0 and t > 0, the following
statements hold:

(2.6) +t"'P (lan; X| > 1)),



1012 H. HUANG AND Q. ZHANG

Lemma 2.5 (Wu et al. [25,27]). Suppose that {an;;i > 1,n > 1} is an array
of real constants satisfying > ., |ani|* = O (n) for some a > 0. Let X be a

random variable, b, = n'/*(log n)l/V for some v > 0. Then

© 2 CE|X|* for a >,
S > BlawX [T (janX| > ba) < 4 CEIX|*log(1+ X)) for a =1,
n=1 "Yn i1 CE|X|Y for a<~.

Lemma 2.6 (Wu et al. [25,27]). Suppose that {an;;i > 1,n > 1} is an array
of real constants satisfying > ., |ani|* = O (n) for some a > 0. Let X be a

random variable, b, = n'/*(log n)l/v for some v > 0. If ¢ > max {«, v}, then

x =2 CE|X|* for a >,
ZWZE|amX|qI(|amX| <bp) <{ CE[X|*log(1+|X]) for a=7,
n=1 """ 21 CE|X|" for a<~.

3. Complete convergence

In this section, some sharp results on complete convergence of the maximum
weighted sums for arrays of rowwise END random variables are established
without assumption of identical distribution. The idea is mainly inspired by
Shen [14], Shen and Wu [15].

Theorem 3.1. Let 0 < § < 1, 0 < o < 2 and ap > 1. Suppose that
{Xni;1 < i < ny,n > 1} ds an array of rowwise END random variables
which is stochastically dominated by X. Let {an;;1 > 1,n > 1} be an array
of real constants such that 3" |an;|* = O(n?). b, = n'/*(log n)l/ﬂ’ for some
v > 0. Assume further that EX,; = 0 if 1 < a < 2. Then there exits some
q > max{a?p,a+2,a+alap—1)/(1-6),a(ap—1)+28} such that E|X|? < oo
implies that

ap—2
(3.1) Zl n P <1I£J'agxn

Proof. Without loss of generality, assume that a,; > 0. For fixed n > 1 and
all 1 <i < n, define

Yoi = —bp I (Xpni < =bp) + Xnil (| Xni] < bp) + bpl(Xni > by),

E a’TLZ ni

i=1

>5bn> <oo for VYe>D0.

J
Tpj =Y (aniYni — EaniYni), j=1,2,...,n
i=1

Obviously, for fixed n > 1, {Y,;,7 > 1} and {Y,; — EY,;,i > 1} are still se-
quences of END random variables by Lemma 2.1. For Ve > 0, noting that

J J n
<1glja<xn > sbn> - <1g1ja<xn > 5bn> U (L_J (| Xnil > bn) )

E anani § aniYni
i—=1 i—=1 =
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which implies

(3.2) <1I£1Ja<xn Zam ni| > €b >
<P
< <1I£1Ja<xn Zam il > €bn, ) (L_J | X il > b )
< —
<P (fgj&x |T;| > €bp mjax ZEam i >—|—P <L_J (| Xnil > by) )
Really, noting that max lani|™ < 30 ani|® = O (n°) for 0 < 6 < 1. Then

(33) D anil" = lani|“lani|* ™ < CnfnfE=o)/e = CnoMe for Yk > a.
A =1

If 0 < a <1, by (2.6) of Lemma 2.4, (3.3) (for ¥ = 1) and the Markov
inequality, we have

bt
(3.4) rél]aé(n

E Ea7w ni
n

< Cb, " Y |EanYoil

i=1
i=1 i=1

< Cb; ' E|X|1(|X| < by) + Cn® P (|X| > by,)

< Cb,'n Y E|X|I (b1 < |X| < by) + Cn®/ b 9B X |
k=2

< Cb;'n®/ Zka(|X| > be_1) + Cn®/on=9/*(logn) "V E|X|?
k=2

< Cby ' N b BIX |, + CnlonT9/% (logn) "4/
k=2

< Cndloti=a/a(log )~V 4 Opd/e=1/%(1og )T 50 asn — oo.

In addition, Y1 | |an;|* = O (n°) and the Hélder inequality imply that

a—k

o

k
(3.5) Z \am <Z |anil* ’“) (Z 1) <Cn for 1<k<a.
i=1

i=1 =1
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If1<a<2 by EX,; =0, (2.7) of Lemma 2.4, (3.5) and F|X|? < oo, we
have

(36) n lgl]a<xn ZEarn ni
-1
< O max, ZEameI<|Xm| < )|+ O3 ol P > )

< bt Z lani|E|X|T(|X]| > bn) + CZ lani| P(|1X| > by)
=1 1=1
< Cb,'nE|X|I(|X]| > b,) + CnP(|X| > b,)
E|X|
bl

=Cb,'n > E|X|I(by < |X| < bgg1) +Cn
k=n

< Cb,'n Y b1 P(IX| > bi) + Cnn~ 7/ (logn) =/

k=n
FElX
< Cby, ankH ‘bq‘ 4 On'= 9/ (log )~/
k=n

< Cn*%(logn) ™7 + Cn'~9%(logn) "7 -0 asn — oco.

Hence, lrila<x Z 1 Bani Y| < Eb" for all n large enough, which implies
<j<n
(3.7) <1g1ja<xn Zam ni >eb>

n

by,
< ; .
< ZP(|X7”| >bn)+P<gljax T > 5 >

To prove (3.1), it suffices to show that

o0 n
(3.8) ITEY 023 " P (|Xpi| > by) < o0,
n=1 i=1
and
by
(3.9) J2 Z ap=2p < max [Ty > 62> <0

By the Markov inequality, F|X|? < co and some standard computations, we
have

q
(3.10) I<C’Zna1’ ZZP |X| > by) <czn‘w 1E|X|
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<C Z nP~n=9/%(logn) "7 < .
n=1

For J, by the Markov inequality (for M > 2) and Lemma 2.2, we have

< ap—21—M . M
(3.11) J<CY 0P, ME (lliljaé(n T

n=1
n

<CY 072, M (log 2n0)™ Y Jan M B[V, M

n=1 i=1
. . M2
+C Z nap—Qb;M(log 2n)M (Z |am|2E|Ym-|2>
n=1 =1
2T+ s

Take some suitable constant M such that

_ 2
max {2, LD a1 < in {0, L2 LER

which implies

q

M
g>a+M, *——>1q¢>do’*p—a+Ms,
a o«

and

M6 Ms M
L aptr2-2%51, ap—2+22 -2 1, M>a
(6% (6% (0% (6%

By (3.3), (2.4) of Lemma 2.3 and the Markov inequality, we have
(3.12)

S <C Z n°P=2p M (log 2n)M

n=1
(Z |am"M (E|XnZ|MI(|XM| < bn) + bT]LMP(|XnZ| > bn))>
i=1
<C Z n°P=2p M (log 2n)M
n=1
(Z jani™ (EIX[MI(1X] < by) + 0Y P(X]| > bn»)

i=1

oo
< CY 0%, M(log 2n) MM/ E|XIMT (1X] < by)
n=1

+C Y nP2(log2n)MnM/ P(IX| > by)

n=1

1015
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< Czn(xp—2+M5/ab;M(log2n)M ZE|X‘NII<I);C,1 < |X| < bk)
n=1 k=2

= E|X
+C Z noP—2+Md/a (log 2n)M Ibq

‘ q

n=1

< CZ WM P(X| > br_1) Z noP=2HMi/a=M/a (146 1) =M/7 (1og 2n)M
k=2 n==k

e nap—2+M5/a

oy (

n=

log 2n)M

na/« (log n)CI/’Y

oo ap—2+M6/a(log Qn)l\/l

<SS WM P(IX| > b)) +C S L
- kZ:Qk (11 k1) + ; na/e(logn)a/v

= EM/ e (log k)M/v
(k = 1)9/>(log(k — 1))/

oo nocp—2+]\/[§/a (log 2n) M

<C +C> -
— nd/ (logn)Q/’Y

k=3

Analogous to the proof of (3.12), for Jo, by (2.4) of Lemma 2.3 and (3.3),

(3.13) < CY n* b, M(log2n)M

n=1
n M/2
(Z |ani|2 (E|XM|QI(|XM| < bn) + bip(‘XnA > bn)))
i=1
<C Z n°P=2p M (log 2n)M

n=1

n M/2
(Z lanil? (EIXPI(X] < ba) + B2P(X] > m))

i=1
<C Z nP=2p M (log 2n)M Mo/«
n=1
(BIXPI(X] < ba) + 0 P(X] > b)) "
< Cznap—sz—LM(log 2n)MnM5/a (E|X|21(|X| < bn))M/2
n=1

+C Y n(log 2n)M M (P(IX| > b))

n=1

< 0> nP2p, M (log 2n)M nMY“BIX|MI(|X| < by)

n=1
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+C Z n?~2(log 2n)Mn™%/pP(|X| > b,)
n=1

< 00.

The proof of Theorem 3.1 is completed. ]

The next theorem treats the case ap = 1. Analogous to that in the proof of
Theorem 3.1, here will omit the details.

Theorem 3.2. Suppose that {X,;;1 <i<n,n>1} is an array of rowwise
END random variables which is stochastically dominated by X. Let {an;;i > 1,
n > 1} be an array of real constants satisfying Y i, |ani|® = O (n) for some
a with 0 < a <2 b, = nl/o‘(logn)l/7 for some v > 0. Assume further
that EX,; = 0 while 1 < a < 2. Then there exits some ¢ > « + 2 such that
E|X|? < oo, implies that

oo J
-1
(3.14) E 1 n P (féljagxn E 1 ni X i
n= 1=

Remark 3.1. The moment condition F|X|? < oo in Theorems 3.1 and 3.2 is
much weaker than the corresponding moment condition E(exp (h|X|")) < oo
of Wang et al. [17], Cai [2]. Since, NA sequences and NOD sequences are
two special cases of END sequences, Theorems 3.1 and 3.2 hold for arrays of
rowwise NA (and NOD) random variables. Therefore, Theorems 3.1 and 3.2
are extensions and improvements of the corresponding ones of Wang et al. [17],
Cai [2] (by letting X,,; instead of X;), respectively. In addition, it is worth
pointing out that the method in the proof of Theorem 3.1 is different from
those of Cai [2] and Wang et al. [17]. And also, the complete convergence
results are obtained under the weighted sums satisfying > | |an:|* = O (n)
for0< a<2.

>ebn> < oo for Ye>0.

4. Complete moment convergence

In this section, we will discuss the complete moment convergence for weighted
sums of arrays of rowwise END random variables. The concept of complete mo-
ment convergence was introduced by Chow [4] as follows: let {X,,,n > 1} be a
sequence of random variables, and a,, > 0, b, > 0, ¢ > 0. If for all € > 0,

> anE (b, | Xn| — )] < o0,
n=1

then the above result was called the complete moment convergence.

Theorem 4.1. Suppose that {X,;;1 <i<n,n>1} is an array of rowwise
NOD random wvariables which is stochastically dominated by a random vari-
able X, and let {an;;i>1,n>1} be an array of real constants satisfying

Sor i lani|® = O (n) for some 0 < o < 2. b, = nl/o‘(logn)l/'y for some v > 0.
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Assume further that EX,; = 0 if 1 < a < 2. Then the following statements
hold:

(i) If a > 7, then E|X|“ < oo implies
e) < oo for Ve >0.

(4.1) > E (bn > aniXi
n=1 i=1 +
(i) If « = 7, then E|X|*log(1l + | X|) < co implies (4.1).
(iii) If a < v, then E|X|" < oo implies (4.1).
Proof. For Ve > 0, note that
+

=1 1
(4.2) > ~E (b
Zame — &> tl/a> dt
=1

Zanz’Xni
n=1 i=1
1 [ 1
0o 1 1 1 n
= zzln/o P a ZaniXm'
=1
3 lp Y i X
il i=1

>€bn>
+Zi/1wp<

i anani
£ T+

>e+ tl/a> dt

> 5+t1/a> dt

IN

> bt/ “) dt

i=1

To prove (4.1), it suffices to prove that I < co and J < oo. Follow the above
result of Shen [14] referred, we directly have I < co.

Assume that a,; > 0. For fixed n > 1, ¢ > 1 and all ¢ > 1, define the
so-called monotone truncation:

Vi = —but!/I (am'Xm' < —bntl/a) + ani Xnil <|aniXi| < bntl/‘l)
+ bt/ (ame > bntl/a) :

Zni = (amxm + bntl/a) I (ame < —bntl/a)
+ (am'Xm' - bntl/a) I (am-Xm- > bntl/a> .

It is easy to check that for Ve > 0,
> bt/ a)

P ( Zame > bntl/a> <P <

i=1

n

i=1
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n
+ P (U <|ame| > bntl/a>>
=1

Z ni
! =
+ ZP (ICL»,”X7”| > bntl/a>.

=1

> bttt/ —

i=1

It is simple to see that

(4.3) sup —0 as n— oo.

t>1 bntl/a

i=1

Really, if 0 < o < 1, by (2.6) of Lemma 2.4, the C, inequality, the Markov
inequality and E|X|* < oo, we have that

n
Z EY,;

<C Yo
Pyl 1/ Z' |

4.4 _—
(4.4) o bot1/o

< < l/a>
C?gfl)b 1/a ZE|anz nz|I(|anz n2| bnt

+ Csup ZP (\am Xni| >0 tl/a)

t>1 "=
=1

< < 1/a)
C?;;l)b 1/ ZE|amX\I<|amX| bt

+ Csu P(amX > bl
t;fZ}\ > but!?)

1 n
< N e ElX O‘I( wiX| < bntl/o‘>
—Ci’g’bgtzam XM (lan: X| <
+ Csu ay; B\ X
> Il)ba Z | |
< C(logn)~ a/7E|X| —0 asn— .
Noting that 0 < Zni = aniXpi — bpt/® < aniXpi if aniXn; > bpt'/e;

niXni < Zni = @niXni + bt/ < 0 if 0,i X < —bpt'/®. Hence, |Z,i| <
|ni Xni| I (|@niXni| > bpt/@).
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Ifl<a<2 by EX,; =0, (2.7) of Lemma 2.4, the C, inequality and
E|X|* < oo, we have that

1
4.5 —
(45 21 batl/o

i=1
i=1

1 n
< Csup bl ZE | Zni
n i=1

t>1

1
= sup ————
tZII) bntl/a

1 n
<cC T /0 K nani I( annz > bntl/a)
= ?121113 bntl/a Zzzl |G; | |a/ |

1 n |
< . . /a)
Cig? b ii/a ; 1 E |amX\ I <|amX| > bt

1 n
< Csup — O‘EXO‘I( i X bntl/o‘>
< iggbatzam |X[7T (lan: X] >
=5 N =1
< C(logn) " E|X|* >0 as n— oo.

Therefore, |> 1" | EY,;| < b“t; " holds uniformly for n large enough and all
t > 1, which implies
> bt/ °‘>

Z (Y"“ - EYT”) > bnl;l/a> + iP ('an'LXn2| > bntl/a)~

i=1
<o
i=1 i=1

To prove J < oo, it suffices to show that

n

(46) S 2 i;/loop ( > (Yni — EYni)

bntl/a
> dt < o0,
i=1 2

] 1 co N
(4.7) Jo & 7/ P (ani Xpi| > bt/ )dt < co.
2230 2P (e )it <oc

By the Markov inequality and (2.2) of Lemma 2.2, we have

=1 [~ 1
(4.8) JISCZg/l WE

n=1

M

Zn: (Yo — EY,)| | dt

i=1

< hl - - )
<5t (S




COMPLETE CONVERGENCE THEOREMS 1021

n M/2
+ (Z E|Yyi — Em|2> dt

i=1

<cS [ STy Ma
<CY ), P
=1 1 i e
2
+CZW/1 W(ZEWM) dt
n=1 n i=1

£ Ji1 + Jia,
where (M > max{Q, %’V})

For Jya, by (2.6) of Lemma 2.4, the C,. inequality, 0 < o < 2 and M > %,
we have

FE X
(49) Ji2 < CZ / ( % (|an1X‘ < bntl/a)
n

" Elan; X|* e
QApj
+ E TI <|amX\ > bntl/a)> dt
i=1 n

00 n M/2
1 o0
< c} :ﬁ/ M2 (b;a§ :(E|amX|“)> dt
i=1

1 —aM/2 M2
<C Zglogn 2(B1X|1)M? < .

For Ji1, by (2.6) of Lemma 2.4 and (2.1), we have that

(4.10)

J11<CZ / ZP @i Xoni| > bt/ )t
+CZnTM/ WZEMMXM\MI <|ame| gbntl/“)dt
<CZ / ZP lani X| > bn tl/o‘)dt
+C’an—M/ WZEMMX\MI (|amX\ gbntl/a)dt

_ ii/ ZP lani X| > b tl/(’)d
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<1 Rl M
+szz WZE|G/TL2X‘ I(‘an1X| Sb”)dt
n=1 n =1

S Y S R M e
+CZnTM/1 7 O ElaniX| I(bn< lani X| < bt/ )dt
n=1 n =1

£ Ji1 + Jiz + Jiis.

For Ji11, by Y. ; lani|® = O (n) and Lemma 2.5, we have that

9] 1 o N .
(4.11) Jin = 025/1 Z:P(\am-X| > bt/ )dt
<y %Z/OOP (\amX| > bntl/“) dt
— )1

n=1 i=1
00 n 00 «@
:Cné_lnzél/l P(b%>t dt

1 a
< CZ — ZE|am~X| I (Jan; X| > b,) < 00
n=1 n =1

For Jy12, by Lemma 2.6 and M > 2 > «, we have that

Elan XM <1
(412) J112 - CZ Z b]w |a”7X| < b )/1 t]%/a dt

< CZ pM ZEMMX‘ I(laniX| <by,) < oo

Take t = z*. By M > 2 > « and Lemma 2.5, we have that
(4.13)

JHS*CZ e / tM/aZE|amX| T (bn < lani X[ < bt/ e

n=1

<CZ bM/ zo M- 1ZE|CLMX| I(by < laniX| < byx)da

=1

CZ 2 Z / gom M ZE‘aniX|MI (bn, < |ani X| < bpz)da

i=1

<CZ LS M S Bla X1 (b < faniX] < by (2 -+ 1))

nlnnLl i=1

= ci — ZZE\amXWI (bns < |aniX| < by (s+1)) i me—M-1

n=1 nog=1s=1 m=s
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1 n oo
it 2 2 Blani XM T (bus < Jani X| < by (s + 1) 57
> (s + DM ME| 0, X[ (bys < |ani X| < by (s +1))

= 1
<C — Y Elan: XTI (Jlan; X| > by) < o00.
< ; b 2 |ani X |71 (Jani X| > bn)
The proof of Theorem 4.1 is completed. O

Remark 4.1. Under the conditions of Theorem 4.1, noting that

oo 1 1 n @
(4.14) 0> ~E <b D aniXni| - s)
1 " li=1 n

=1 [ 1 | e
:Zﬁ/o P(bn Zame;76>t )dt
n=1 i=1
e o] 1 e n
-y ! / P[> aniXos| > 0t/ + by | at
1 /o i=1

00 1 oo n
€ P(

ZaniXm'
=1

> bt/ + bn5> dt

vV
Q
]z .
S|
N

> 2bns) dt

=1
> 2bn€> .
n=1

Since € > 0 is arbitrary. From (4.14), it is clear to see that the complete
moment convergence implies the complete convergence. Hence, Theorem 4.1
improves the corresponding result of Shen [14] listed in references under the
same conditions.

Acknowledgements. The authors are most grateful to the Editor and anony-
mous referees for careful reading of the manuscript and valuable suggestions
which helped in improving an earlier version of this paper.
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