• Title/Summary/Keyword: End-milling Force

Search Result 217, Processing Time 0.023 seconds

Study on the Change of Cutting Force Direction in Endmilling (엔드밀링에서 절삭력 방향변동에 관한 고찰)

  • Song, Tae-Seong;Kim, Hee-Sool;Lee, Ji-Hyung;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.37-45
    • /
    • 2007
  • End-milling is intermittent cutting process performed by a tool with a number of teeth. Its cutting forces are commonly measured by the tool dynamometer which has rectangular coordinates. In this case, the pattern of cutting forces is different according to cutting conditions. At a certain cutting condition, the sign of cutting force changes from positive to negative during a revolution of one tooth. The change of force direction excites a cutting tool and severe vibration arises when radial depth of cut increases. In this study, cutting experiments and simulations were carried out in order to explain the cause of the change of the cutting force direction. In addition, the effect of the cutting force change was discussed in terms of chatter vibration in end milling.

An Experimental Study on the Dimensional Error in Ball End Milling (볼 엔드밀 가공에서 치수오차에 관한 실험적 연구)

  • 심기중;유종선;정진용;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.62-69
    • /
    • 2004
  • This paper presents an experimental study on the dimensional error in ball-end milling. In the 3D free-formed surface machining using ball-end milling, while machining conditions are varied due to the Z component of the feed and existing hemisphere part of the ball-end mill, the mechanics of ball-end milling are complicated. In the finishing, most of cutting is performed the ball part of the cutter and the machined surface are required the high quality. But the dimensional errors in the ball-end milling are inevitably caused by tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, the most significant one of dimensional error is usually known as tool deflection. Tool deflection is related to the instantaneous horizontal cutting force and varied the finishing cutting path. It lead to decrease cutting area, thus resulting cutting forces but the dimensional precision surface could not be obtained. So the machining experiments are conducted fur dimensional error investigation and these results may be used for decrease dimensional errors in practice.

Cutter Runout Elimination in End Milling through Two-Axes PI Force Control (엔드밀 가공에서 2축 절사력 PI 제어를 통한 커터 런아웃 제거에 관한 연구)

  • Noh, Jong-Ho;Hwang, Joon;Liang, Steven Y.;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • This paper presents the in-process runout compensation methodology to improve the surface quality of circular contouring cut in end milling process. The runout compensation system is based on the manipulation of workpiece position relative to cutter in minimizing the cutting force oscillation at spindle frequency. the basic concept of this approach is realized on a end milling machine whose machining table accommodates a set of orthogonal translators perpendicular to the spindle axis. The system performed that measuring the runout related cutting force component, formulating PI controlling commands, and the manipulating the workpiece position to counteract the variation of chip load during the circular contouring cut. To evaluate the runout compensation system performance, experimental study based on the implementation of two-axes PI force control is presented in the context of cutting force regulation and part surface finish improvement.

  • PDF

Mode analysis of end-milling process by RLSM (RLSM 모델링에 의한 엔드밀링 시스템의 모드 분석)

  • Kim, J.D.;Yoon, M.C.;Kim, K.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.54-60
    • /
    • 2011
  • In this study, an analytical realization of end-milling system was introduced using recursive parametric modeling analysis. Also, the numerical mode analysis of end-milling system with different conditions was performed systematically. In this regard, a recursive least square(RLS) modeling algorithm and the natural mode for real part and imaginary one was discussed. This recursive approach (RLSM) can be adopted for the on-line system identification and monitoring of an end-milling for this purpose. After experimental practice of the end-milling, the end-milling force was obtained and it was used for the calculation of FRF(Frequency response function) and mode analysis. Also the FRF was analysed for the prediction of a end-milling system using recursive algorithm.

Mode analysis of end-milling process by recursive parametric modelling (순환 파라메트릭 모델링에 의한 엔드밀 시스템의 모드 분석)

  • Kim, T.H.;Kim, J.D.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.73-79
    • /
    • 2011
  • In this study, an analytical realization of end-milling system was introduced using recursive parametric modeling analysis. Also, the numerical mode analysis of end-milling system with different conditions was performed systematically. In this regard, a recursive least square modelling algorithm and the natural mode for real part and imaginary one was discussed. This recursive approach (RLSM) can be adopted for on-line end-milling identification. After experimental practice of the end-milling, the end-milling force was obtained and it was used for the calculation of FRF (Frequency response function) and mode analysis. Also the FRF was analysed for the prediction of a end-milling system using recursive algorithm.

A Study on the Cutting Force and Machining Error on the Inclined Plane in Ball-end Milling (볼엔드밀에 의한 경사면 가공시 절삭력 및 가공 오차에 관한 연구)

  • Doo, Seung;Hong, Joo-Won;Suh, Nam-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.112-119
    • /
    • 2001
  • In modern manufacturing, many products that have geometrically complicated features, including three-dimensional sculptured surfaces, are being designed and produced to meet various sophisticated functional specifications. The cutting force is required not only for the design of machine and cutting tools, but also for the determination of the cutting conditions for the various machining operations. The ball-end mill is deflected by the cutting force and, the tool deflection is one of the main reasons of the machining errors on a free-form surface. Hence, The cutting force generated in the ball-end milling is the most important property of the machining. The purpose of this study is to find the characteristics of the cutting force in inclined plane and the resultant machining errors in the ball-end milling process. Although the depth of cut is constant in the inclined plane, the cutting force area varies due to the hemisphere of the ball-end mill.

  • PDF

Modeling of Cutting Parameters and Optimal Process Design in Micro End-milling Processes (마이크로 엔드밀링 공정의 절삭계수 모델링 및 최적 공정설계)

  • Lee, Kwang-Jo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.261-269
    • /
    • 2009
  • Micro end-milling process is applied to fabricate precision mechanical parts cost-effectively. It is a complex and time-consuming job to select optimal process conditions with high productivity and quality. To improve the productivity and quality of precision mechanical parts, micro end-mill wear and cutting force characteristics should be studied carefully. In this paper, high speed machining experiments are studied to construct the optimum process design as well as the mathematical modeling of tool wear and cutting force related to cutting parameters in micro ball end-milling processes. Cutting force and wear characteristics under various cutting conditions are investigated through the condition monitoring system and the design of experiment. In order to construct the cutting database, mathematical models for the flank wear and cutting force gradient are derived from the response surface method. Optimal milling conditions are extracted from the developed experimental models.

  • PDF

Cutting Characteristics in Down-End Milling with Different Helix Angles (하향엔드밀링시 헬릭스각에 따른 절삭특성변화)

  • 이영문;장승일;서민교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.77-82
    • /
    • 2003
  • In end milling process, undeformed chip thickness and cutting force vary periodically with phase change of the tool. Recently, a model has been proposed to simulate the shear and friction characteristics of an up-end milling process in terms of the equivalent oblique cutting to this. In the current study, the varying undeformed chip thickness and the cutting forces in a down-end milling process have been replaced with the equivalent ones of oblique cutting. And, the down-end milling characteristics of SM45C has been compared with that of the up-end milling previously presented with different helix angles.

  • PDF

Effects of Cutting Conditions on Specific Cutting Force Coefficients in Milling (밀링가공시 절삭조건이 비절삭력계수에 미치는 영향 분석)

  • 이신영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.93-98
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. Specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The effects of the cutting conditions on the specific cutting force constants in milling were studied. The model is verified through comparisons of model predicted cutting forces with measured culling forces obtained from machining experiments

  • PDF

금형강의 앤드밀 가공시 동적모델에 의한 절삭력 예측

  • 이기용;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.49-54
    • /
    • 1994
  • A dynamic model for the cutting process in the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model, which uses instantaneous specific cutting force, includes both regenerative effect and penetration effect. The model is verified through comparisons of model predicted cutting force with measured cutting forces obtained from machining experiments.

  • PDF